|
[1]
|
Babaahamdi-Milani, M. and Nezamzadeh-Ejhieh, A. (2016) A Comprehensive Study on Photocatalytic Activity of Supported Ni/Pb Sulfide and Oxide Systems onto Natural Zeolite Nanoparticles. Journal of Hazardous Materials, 318, 291-301. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Sahiner, N., Ozay, H., Ozay, O. and Aktas, N. (2010) A Soft Hydrogel Reactor for Cobalt Nanoparticle Preparation and Use in the Reduction of Nitrophenols. Applied Catalysis B, 101, 137-143. [Google Scholar] [CrossRef]
|
|
[3]
|
Wang, M.-L., Jiang, T.-T., Lu, Y., Liu, H.-J. and Chen, Y. (2013) Gold Nanoparticles Immobilized in Hyperbranched Polyethylenimine Modified Polyacrylonitrile Fiber as Highly Efficient and Recyclable Heterogeneous Catalysts for the Reduction of 4-Nitrophenol. Journal of Materials Chemistry A, 1, 5923-5933. [Google Scholar] [CrossRef]
|
|
[4]
|
Zhao, H., Li, Y., Wang, D. and Zhao, L. (2018) Synthesis of N-Doped Core-Shell-Structured Porous CoSe@C Composites and Their Efficient Catalytic Activity for the Reduction of 4-Nitrophenol. European Journal of Inorganic Chemistry, 2018, 1145-1151. [Google Scholar] [CrossRef]
|
|
[5]
|
Lu, Y., Mei, Y. and Ballauff, M. (2006) Thermosensitive Core-Shell Particles as Carrier Systems for Metallic Nanoparticles. The Journal of Physical Chemistry B, 110, 3930-3937. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Li, Y., Cao, Y., Xie, J., Jia, D., Qin, H. and Liang, Z. (2015) Facile Solid-State Synthesis of Ag/Graphene Oxide Nanocomposites as Highly Active and Stable Catalyst for the Reduction of 4-Nitrophenol. Catalysis Communications, 58, 21-25. [Google Scholar] [CrossRef]
|
|
[7]
|
Niu, Z., Zhang, S., Sun, Y., Gai, S., He, F., Dai, Y., Li, L. and Yang, P. (2014) Controllable Synthesis of Ni/SiO(2) Hollow Spheres and Their Excellent Catalytic Performance in 4-Nitrophenol Reduction. Dalton Transactions, 43, 16911-16918. [Google Scholar] [CrossRef]
|
|
[8]
|
徐佳园. 硝基芳烃选择性加氢催化剂及催化工艺研究[D]: [硕士学位论文]. 厦门: 厦门大学, 2020.
|
|
[9]
|
胡聪. 贵金属催化的加氢烷基化绿色工艺研究[D]: [硕士学位论文]. 厦门: 厦门大学, 2020.
|
|
[10]
|
Wu, Y., et al. (2014) Ni/Graphene Nanostructure and Its Electron-Enhanced Catalytic Action for Hydrogenation Reaction of Nitrophenol. The Journal of Physical Chemistry C, 118, 6307-6313. [Google Scholar] [CrossRef]
|
|
[11]
|
蔡宇晨, 徐子涵, 王丽丽, 等. 芳硝基化合物加氢催化剂研究进展[J]. 山东化工, 2023, 52(12): 84-86.
|
|
[12]
|
林盆. 高效镍基催化剂及催化加氢合成对氨基苯乙醚新工艺研究[D]: [硕士学位论文]. 杭州: 浙江工业大学, 2017.
|
|
[13]
|
刘健. 基于层层自组装的气-液-固三相微反应器高效催化层的构建及其性能[D]: [博士学位论文]. 重庆: 重庆大学, 2019.
|
|
[14]
|
Liu, K., Wang, Y., Chen, P., Zhong, W., Liu, Q., Li, M., et al. (2016) Noncrystalline Nickel Phosphide Decorated Poly(Vinyl Alcohol-Coethylene) Nanofibrous Membrane for Catalytic Hydrogenation of P-Nitrophenol. Applied Catalysis B, 196, 223-231. [Google Scholar] [CrossRef]
|
|
[15]
|
De, S., Zhang, J., Luque, R. and Yan, N. (2016) Ni-Based Bimetallic Heterogeneous Catalysts for Energy and Environmental Applications. Energy & Environmental Science, 9, 3314-3347. [Google Scholar] [CrossRef]
|
|
[16]
|
Wienhöfer, G., Sorribes, I., Boddien, A., Westerhaus, F., Junge, K., Junge, H., Llusar, R. and Beller, M. (2011) General and Selective Iron Catalyzed Transfer Hydrogenation of Nitroarenes without Base. Journal of the American Chemical Society, 133, 12875-12879. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
秦成心. 基于氢转移反应的多相催化剂的制备与性能研究[D]: [硕士学位论文]. 泰安: 山东农业大学, 2022.
|
|
[18]
|
Tian, X., Zahid, M., Li, J., Sun, W., Niu, X. and Zhu, Y. (2020) Pd/Mo2N-TiO2 as Efficient Catalysts for Promoted Selective Hydrogenation of 4-Nitrophenol: A Green Bioreducing Preparation Method. Journal of Catalysis, 391, 190-201. [Google Scholar] [CrossRef]
|
|
[19]
|
Zhang, D., Chen, L. and Ge, G. (2015) A Green Approach for Efficient P-Nitrophenol Hydrogenation Catalyzed by a Pd-Based Nanocatalyst. Catalysis Communications, 66, 95-99. [Google Scholar] [CrossRef]
|
|
[20]
|
王玉娥. 苯二胺合成工艺的研究[D]: [硕士学位论文]. 青岛: 青岛科技大学, 2017.
|