|
[1]
|
Blonder, B., Both, S., Jodra, M., et al. (2020) Linking Functional Traits to Multiscale Statistics of Leaf Venation Networks. New Phytologist, 228, 1796-1810. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Roth-Nebelsick, A., Uhl, D., Mosbrugger, V., et al. (2001) Evolution and Function of Leaf Venation Architecture: A Review. Annals of Botany, 87, 553-566. [Google Scholar] [CrossRef]
|
|
[3]
|
Lawren, S. and Christine, S. (2013) Leaf Venation: Structure, Function, Development, Evolution, Ecology and Applications in the Past, Present and Future. The New Phytologist, 198, 983-1000. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Ronellenfitsch, H. and Katifori, E. (2019) Phenotypes of Vascular Flow Networks. Physical Review Letters, 123, Article ID: 248101. [Google Scholar] [CrossRef]
|
|
[5]
|
Blonder, B., Salinas, N., Bentley, L.P., et al. (2018) Structural and Defensive Roles of Angiosperm Leaf Venation Network Reticulation across an Andes-Amazon Elevation Gradient. Journal of Ecology, 106, 1683-1699. [Google Scholar] [CrossRef]
|
|
[6]
|
Ohtsuka, A., Sack, L. and Taneda, H. (2018) Bundle Sheath Lignification Mediates the Linkage of Leaf Hydraulics and Venation. Plant Cell and Environment, 41, 342-353. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Katifori, E., Szollosi, G.J. and Magnasco, M.O. (2010) Damage and Fluctuations Induce Loops in Optimal Transport Networks. Physical Review Letters, 104, Article ID: 048704. [Google Scholar] [CrossRef]
|
|
[8]
|
Brodribb, T.J., Bienaime, D. and Marmottant, P. (2016) Revealing Catastrophic Failure of Leaf Networks under Stress. Proceedings of the National Academy of Sciences of the United States of America, 113, 4865-4869. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Agrawal, A.A. and Konno, K. (2009) Latex: A Model for Understanding Mechanisms, Ecology, and Evolution of Plant Defense against Herbivory. Annual Review of Ecology Evolution and Systematics, 40, 311-331. [Google Scholar] [CrossRef]
|
|
[10]
|
Givnish, T. (1979) On the Adaptive Significance of Leaf Form. In: Solbrig, O.T., Jain, S., Johnson, G.B., et al., Eds., Topics in Plant Population Biology, Macmillan Education, London, 375-407. [Google Scholar] [CrossRef]
|
|
[11]
|
John, G.P., Scoffoni, C., Buckley, T.N., et al. (2017) The Anatomical and Compositional Basis of Leaf Mass per Area. Ecology Letters, 20, 412-425. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
熊映杰, 于果, 魏凯璐, 等. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2): 136-147.
|
|
[13]
|
李乐, 曾辉, 郭大立. 叶脉网络功能性状及其生态学意义[J]. 植物生态学报, 2013, 37(7): 691-698.
|
|
[14]
|
孟婷婷, 倪健, 王国宏. 植物功能性状与环境和生态系统功能[J]. 植物生态学报, 2007(1): 150-165.
|
|
[15]
|
Brodribb, T.J., Feild, T.S. and Jordan, G.J. (2007) Leaf Maximum Photosynthetic Rate and Venation Are Linked by Hydraulics. Plant Physiology, 144, 1890-1898. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Peng, G., Xiong, Y., Yin, M., et al. (2022) Leaf Venation Architecture in Relation to Leaf Size across Leaf Habits and Vein Types in Subtropical Woody Plants. Frontiers in Plant Science, 13, Article ID: 873036. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Hua, L., He, P., Goldstein, G., et al. (2020) Linking Vein Properties to Leaf Biomechanics across 58 Woody Species from a Subtropical Forest. Plant Biology, 22, 212-220. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
黄俊丽, 马娜娜, 车树刚, 等. 植物叶脉发育的分子机制[J]. 生命科学, 2011, 23(8): 804-811.
|
|
[19]
|
Sack, L. and Scoffoni, C. (2013) Leaf Venation: Structure, Function, Development, Evolution, Ecology and Applications in the Past, Present and Future. New Phytologist, 198, 983-1000. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Colmer, T.D., Winkel, A. and Pedersen, O. (2011) A Perspective on Underwater Photosynthesis in Submerged Terrestrial Wetland Plants. Aob Plants, 2011, plr030. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Yan, T., Xue, J., Zhou, Z., et al. (2020) The Trends in Research on the Effects of Biochar on Soil. Sustainability, 12, Article No. 7810. [Google Scholar] [CrossRef]
|
|
[22]
|
陈悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能[J]. 科学学研究, 2015, 33(2): 242-253.
|
|
[23]
|
Zhang, Y., Li, C., Ji, X., et al. (2020) The Knowledge Domain and Emerging Trends in Phytoremediation: A Scientometric Analysis with CiteSpace. Environmental Science and Pollution Research, 27, 15515-15536. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Fang, J., Pan, L., Gu, Q.-X., et al. (2020) Scientometric Analysis of MTOR Signaling Pathway in Liver Disease. Annals of Translational Medicine, 8, Article No. 93. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Wang, W. and Lu, C. (2020) Visualization Analysis of Big Data Research Based on Citespace. Soft Computing, 24, 8173-8186. [Google Scholar] [CrossRef]
|
|
[26]
|
Xu, Y.-Q. (2020) Digital Innovation Ecosystem: Research Context, Research Hotspot and Research Trends—Knowledge Mapping Analysis Using Citespace. Journal of Electronics and Information Science, 5, 72-80
|
|
[27]
|
Xue, Y. (2021) The Research Status and Prospect of Global Change Ecology in the Past 30 Years Based on CiteSpace. Advances in Environmental Protection, 11, 281-287. [Google Scholar] [CrossRef]
|
|
[28]
|
Shao, H., Kim, G., Li, Q., et al. (2021) Web of Science-Based Green Infrastructure: A Bibliometric Analysis in CiteSpace. Land, 10, Article No. 711. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Yu, L. (2021) The Scientific Development of Ecosystem Service Values. 2021 7th International Engineering Conference “Research & Innovation amid Global Pandemic”, Erbil, 24-25 February 2021, 128-133. [Google Scholar] [CrossRef]
|
|
[30]
|
张爱霞, 周飞丽, 刘炼, 等. 基于Web of Science和CiteSpace的水稻育种研究热点与前沿分析[J]. 分子植物育种, 2023, 21(15): 5066-5078.
|
|
[31]
|
Mackinlay, J., Hanrahan, P. and Stolte, C. (2007) Show Me: Automatic Presentation for Visual Analysis. IEEE Transactions on Visualization and Computer Graphics, 13, 1137-1144. [Google Scholar] [CrossRef]
|
|
[32]
|
Guo, J., Xue, J., Hua, J., et al. (2022) Research Status and Trends of Underwater Photosynthesis. Sustainability, 14, Article No. 4644. [Google Scholar] [CrossRef]
|
|
[33]
|
Ding, X. and Yang, Z. (2022) Knowledge Mapping of Platform Research: A Visual Analysis Using VOSviewer and CiteSpace. Electronic Commerce Research, 22, 787-809. [Google Scholar] [CrossRef]
|
|
[34]
|
张会择, 赖宇. 基于CiteSpace的医学免疫学实验教学研究现状、热点及发展趋势的可视化分析[J]. 中国免疫学杂志, 2022(9): 1-9.
|
|
[35]
|
Stringer, M.J., Sales-Pardo, M. and Amaral, L.A.N. (2008) Effectiveness of Journal Ranking Schemes as a Tool for Locating Information. PLOS ONE, 3, e1683. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Smith, D.R. (2009) A 30-Year Citation Analysis of Bibliometric Trends at the Archives of Environmental Health, 1975-2004. Archives of Environmental & Occupational Health, 64, 43-54. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Cohu, C.M., Muller, O., Adams, W.W., et al. (2014) Leaf Anatomical and Photosynthetic Acclimation to Cool Temperature and High Light in Two Winter versus Two Summer Annuals. Physiologia Plantarum, 152, 164-173. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Adams, W.W., Stewart, J.J., Cohu, C.M., et al. (2016) Habitat Temperature and Precipitation of Arabidopsis Thaliana Ecotypes Determine the Response of Foliar Vasculature, Photosynthesis, and Transpiration to Growth Temperature. Frontiers in Plant Science, 7, Article No. 1026. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Carins Murphy, M.R., Jordan, G.J. and Brodribb, T.J. (2014) Acclimation to Humidity Modifies the Link between Leaf Size and the Density of Veins and Stomata. Plant Cell and Environment, 37, 124-131. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Brodribb, T.J. and Jordan, G.J. (2011) Water Supply and Demand Remain Balanced during Leaf Acclimation of Nothofagus Cunninghamii Trees. New Phytologist, 192, 437-448. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Wu, J., Wu, X. and Zhang, J. (2019) Development Trend and Frontier of Stormwater Management (1980-2019): A Bibliometric Overview Based on CiteSpace. Water, 11, Article No. 1908. [Google Scholar] [CrossRef]
|
|
[42]
|
Li, X., Du, J. and Long, H. (2018) A Comparative Study of Chinese and Foreign Green Development from the Perspective of Mapping Knowledge Domains. Sustainability, 10, Article No. 4357. [Google Scholar] [CrossRef]
|
|
[43]
|
Hu, W., Li, C.-H., Ye, C., et al. (2019) Research Progress on Ecological Models in the Field of Water Eutrophication: CiteSpace Analysis Based on Data from the ISI Web of Science Database. Ecological Modelling, 410, Article ID: 108779. [Google Scholar] [CrossRef]
|
|
[44]
|
Brodribb, J.T., et al. (2010) Viewing Leaf Structure and Evolution from a Hydraulic Perspective. Functional Plant Biology, 37, 488-498. [Google Scholar] [CrossRef]
|
|
[45]
|
Nardini, A., Peda, G. and La Rocca, N. (2012) Trade-Offs between Leaf Hydraulic Capacity and Drought Vulnerability: Morpho-Anatomical Bases, Carbon Costs and Ecological Consequences. New Phytologist, 196, 788-798. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Walls, R.L. (2011) Angiosperm Leaf Vein Patterns Are Linked to Leaf Functions in a Global-Scale Data Set. American Journal of Botany, 98, 244-253. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Christine, S., Michael, R., Athena, M., et al. (2011) Decline of Leaf Hydraulic Conductance with Dehydration: Relationship to Leaf Size and Venation Architecture. Plant Physiology, 156, 832-843. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Brodribb, T.J., Jordan, G.J. and Carpenter, R.J. (2013) Unified Changes in Cell Size Permit Coordinated Leaf Evolution. New Phytologist, 199, 559-570. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Boyce, C.K., Lee, J.-E., Feild, T.S., et al. (2010) Angiosperms Helped Put the Rain in the Rainforests: The Impact of Plant Physiological Evolution on Tropical Biodiversity. Annals of the Missouri Botanical Garden, 97, 527-540. [Google Scholar] [CrossRef]
|
|
[50]
|
Stewart, J.J., Demmig-Adams, B., Cohu, C.M., et al. (2016) Growth Temperature Impact on Leaf Form and Function in Arabidopsis Thaliana Ecotypes from Northern and Southern Europe. Plant Cell and Environment, 39, 1549-1558. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Mclean, E.H., Prober, S.M., Stock, W.D., et al. (2014) Plasticity of Functional Traits Varies Clinally along a Rainfall Gradient in Eucalyptus Tricarpa. Plant Cell and Environment, 37, 1440-1451. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Mendez-Alonzo, R., Ewers, F.W., Jacobsen, A.L., et al. (2019) Covariation between Leaf Hydraulics and Biomechanics Is Driven by Leaf Density in Mediterranean Shrubs. Trees-Structure and Function, 33, 507-519. [Google Scholar] [CrossRef]
|
|
[53]
|
Boyce, C.K., Brodribb, T.J., Feild, T.S., et al. (2009) Angiosperm Leaf Vein Evolution Was Physiologically and Environmentally Transformative. Proceedings of the Royal Society B-Biological Sciences, 276, 1771-1776. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Brodribb, T.J. and Feild, T.S. (2010) Leaf Hydraulic Evolution Led a Surge in Leaf Photosynthetic Capacity during Early Angiosperm Diversification. Ecology Letters, 13, 175-183. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Yang, H., Shao, X. and Wu, M. (2019) A Review on Ecosystem Health Research: A Visualization Based on CiteSpace. Sustainability, 11, Article No. 4908. [Google Scholar] [CrossRef]
|
|
[56]
|
Schlueter, U., Braeutigam, A., Gowik, U., et al. (2017) Photosynthesis in C-3-C-4 Intermediate Moricandia Species. Journal of Experimental Botany, 68, 191-206. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Kumar, D. and Kellogg, E.A. (2019) Getting Closer: Vein Density in C-4 Leaves. New Phytologist, 221, 1260-1267. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Hodgson, J.G., Montserrat-Marti, G., Charles, M., et al. (2011) Is Leaf Dry Matter Content a Better Predictor of Soil Fertility than Specific Leaf Area? Annals of Botany, 108, 1337-1345. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
De La Riva, E.G., Olmo, M., Poorter, H., et al. (2016) Leaf Mass per Area (LMA) and Its Relationship with Leaf Structure and Anatomy in 34 Mediterranean Woody Species along a Water Availability Gradient. PLOS ONE, 11, e0148788. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Giraldo, J.P., Wheeler, J.K., Huggett, B.A., et al. (2014) The Role of Leaf Hydraulic Conductance Dynamics on the Timing of Leaf Senescence. Functional Plant Biology, 41, 37-47. [Google Scholar] [CrossRef]
|
|
[61]
|
Liang, X., He, P., Liu, H., et al. (2019) Precipitation Has Dominant Influences on the Variation of Plant Hydraulics of the Native Castanopsis fargesii (Fagaceae) in Subtropical China. Agricultural and Forest Meteorology, 271, 83-91. [Google Scholar] [CrossRef]
|
|
[62]
|
Huang, L., Zhou, M., Lv, J., et al. (2020) Trends in Global Research in Forest Carbon Sequestration: A Bibliometric Analysis. Journal of Cleaner Production, 252, Article ID: 119908. [Google Scholar] [CrossRef]
|
|
[63]
|
Blonder, B., Violle, C., Bentley, L.P., et al. (2011) Venation Networks and the Origin of the Leaf Economics Spectrum. Ecology Letters, 14, 91-100. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Malenovsky, Z., Turnbull, J.D., Lucieer, A., et al. (2015) Antarctic Moss Stress Assessment Based on Chlorophyll Content and Leaf Density Retrieved from Imaging Spectroscopy Data. New Phytologist, 208, 608-624. [Google Scholar] [CrossRef] [PubMed]
|