|
[1]
|
Léauté-Labrèze, C., Prey, S. and Ezzedine, K. (2011) Infantile Haemangioma: Part I. Pathophysiology, Epidemiology, Clinical Features, Life Cycle and Associated Structural Abnormalities. Journal of the European Academy of Dermatology and Venereology, 25, 1245-1253. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Greenberger, S. and Bischoff, J. (2011) Infantile Hemangioma-Mechanism(S) of Drug Action on a Vascular Tumor. Cold Spring Harbor Perspectives in Medicine, 1, a006460. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Satterfield, K.R. and Chambers, C.B. (2019) Current Treatment and Management of Infantile Hemangiomas. Survey of Ophthalmology, 64, 608-618. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Léauté-Labrèze, C., Dumas De La Roque, E., Hubiche, T., et al. (2008) Propranolol for Severe Hemangiomas of Infancy. New England Journal of Medicine, 358, 2649-2651. [Google Scholar] [CrossRef]
|
|
[5]
|
Pandey, V., Tiwari, P., Imran, M., et al. (2021) Adverse Drug Reactions Following Propranolol in Infantile Hemangioma. Indian Pediatrics, 58, 753-755. [Google Scholar] [CrossRef]
|
|
[6]
|
Makkeyah, S.M., Elseedawy, M.E., Abdel-Kader, H.M., et al. (2022) Vascular Endothelial Growth Factor Response with Propranolol Therapy in Patients with Infantile Hemangioma. Pediatric Hematology and Oncology, 39, 215-224. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Rotter, A. and De Oliveira, Z.N.P. (2017) Infantile Hemangioma: Pathogenesis and Mechanisms of Action of Propranolol. Journal Der Deutschen Dermatologischen Gesellschaft, 15, 1185-1190. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Ye, Y., Zhong, H., Dou, L., et al. (2022) Propranolol Inhibits the Angiogenic Capacity of Hemangioma Endothelia via Blocking β-Adrenoceptor in Mast Cell. Pediatric Research, 92, 424-429. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Li, H.H., Lou, Y., Zhang, R.R., et al. (2019) Propranolol Accelerats Hemangioma Stem Cell Transformation into Adipocyte. Annals of Plastic Surgery, 83, e5-e13. [Google Scholar] [CrossRef]
|
|
[10]
|
Zhao, Z.L., Liu, C., Wang, Q.Z., et al. (2022) Engineered Exosomes for Targeted Delivery of MiR-187-3p Suppress the Viability of Hemangioma Stem Cells by Targeting Notch Signaling. Annals of Translational Medicine, 10, Article 621. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Liu, C., Zhao, Z., Ji, Z., et al. (2019) MiR-187-3p Enhances Propranolol Sensitivity of Hemangioma Stem Cells. Cell Structure and Function, 44, 41-50. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Huang, J., Jiang, D., Zhao, S., et al. (2019) Propranolol Suppresses Infantile Hemangioma Cell Proliferation and Promotes Apoptosis by Upregulating MiR-125b Expression. Anti-Cancer Drugs, 30, 501-507. [Google Scholar] [CrossRef]
|
|
[13]
|
Wu, Z.B., Shi, S.L., et al. (2021) Propranolol Inhibits Infantile Hemangioma by Regulating the MiR-424/Vascular Endothelial Growth Factor-A (VEGFA) Axis. Translational Pediatrics, 10, 1867-1876. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Li, D., Li, P., Guo, Z., et al. (2017) Downregulation of MiR-382 by Propranolol Inhibits the Progression of Infantile Hemangioma via the PTEN-Mediated AKT/MTOR Pathway. International Journal of Molecular Medicine, 39, 757-763. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Hasan, Q., Tan, S.T., Gush, J., et al. (2000) Steroid Therapy of a Proliferating Hemangioma: Histochemical and Molecular Changes. Pediatrics, 105, 117-120. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Greenberger, S., Boscolo, E., Adini, I., et al. (2010) Corticosteroid Suppression of VEGF-A in Infantile Hemangioma-Derived Stem Cells. New England Journal of Medicine, 362, 1005-1013. [Google Scholar] [CrossRef]
|
|
[17]
|
Zhang, L., Wu, H.W., Yuan, W., et al. (2017) Estrogen-Mediated Hemangioma-Derived Stem Cells through Estrogen Receptor-α for Infantile Hemangioma. Cancer Management and Research, 9, 279-286. [Google Scholar] [CrossRef]
|
|
[18]
|
George, M.E., Sharma, V., Jacobson, J., et al. (2004) Adverse Effects of Systemic Glucocorticosteroid Therapy in Infants with Hemangiomas. Archives of Dermatology, 140, 963-969. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Tu, J.B., Li, Q.Y., Jiang, F., et al. (2014) Pingyangmycin Stimulates Apoptosis in Human Hemangioma-Derived Endothelial Cells through Activation of the P53 Pathway. Molecular Medicine Reports, 10, 301-305. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Sgonc, R., Fuerhapter, C., Boeck, G., et al. (1998) Induction of Apoptosis in Human Dermal Microvascular Endothelial Cells and Infantile Hemangiomas by Interferon-α. International Archives of Allergy and Immunology, 117, 209-214.
|
|
[21]
|
范琴, 王树坚, 李娜, 等. 婴儿血管瘤的研究进展[J]. 当代医学, 2022, 28(17): 187-190.
|
|
[22]
|
Cao, Y., Wang, F., Jia, Q., et al. (2014) One Possible Mechanism of Pulsed Dye Laser Treatment on Infantile Hemangioma: Induction of Endothelial Apoptosis and Serum Vascular Endothelial Growth Factor (VEGF) Level Changes. Journal of Lasers in Medical Sciences, 5, 75-81.
|
|
[23]
|
Rocco, R., Alegre, N., Pozner, R., et al. (2018) Selective Hemangioma Cell Dysfunction and Apoptosis Triggered by in Vitro Treatment with Imiquimod. Toxicology Letters, 288, 82-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Wang, Y., Chen, J., Tang, W., et al. (2017) Rapamycin Inhibits the Proliferation of Endothelial Cells in Hemangioma by Blocking the MTOR-FABP4 Pathway. Biomedicine & Pharmacotherapy, 85, 272-279. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
高晓芸, 温俊平, 杨宇. PI3K/AKT/MTOR/4EBP1信号通路在体外培养血管瘤血管内皮细胞中的表达[J]. 中外医学研究, 2019, 17(3): 1-4.
|
|
[26]
|
Ran, Y., Chen, S., Dai, Y., et al. (2015) Successful Treatment of Oral Itraconazole for Infantile Hemangiomas: A Case Series. Journal of Dermatology, 42, 202-206. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Chen, S., Zhuang, K., Sun, K., et al. (2019) Itraconazole Induces Regression of Infantile Hemangioma via Downregulation of the Platelet-Derived Growth Factor-D/PI3K/Akt/MTOR Pathway. Journal of Investigative Dermatology, 139, 1574-1582. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Xie, C., Xu, X., Wang, X., et al. (2018) Cyclooxygenase-2 Induces Angiogenesis in Pancreatic Cancer Mediated by Prostaglandin E2. Oncology Letters, 16, 940-948. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Wang, Y., Kong, L., Sun, B., et al. (2022) Celecoxib Induces Adipogenic Differentiation of Hemangioma-Derived Mesenchymal Stem Cells through the PPAR-γ Pathway in Vitro and in Vivo. Experimental and Therapeutic Medicine, 23, Article No. 375. [Google Scholar] [CrossRef] [PubMed]
|