| [1] | Adams, T.H. (2022) Coal Ash Recycling Rate Increases in 2020, Reversing Previous Years’ Declines. American Coal Ash Association. https://concreteproducts.com/index.php/2022/01/13/coal-ash-recycling-rate-increases-in-2020-reversing-previous-years-declines/
 | 
                     
                                
                                    
                                        | [2] | Yang, H.J., Lee, C.H., Shim, S.H., et al. (2021) Performance Evaluation of Cement Paste Incorporating Ferro-Nickel Slag Powder under Elevated Temperatures. Case Studies in Construction Materials, 15, e00727. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [3] | Wang, Y.L., Cui, S.P., Tian, G.P., et al. (2016) Effect of Fly Ash Composition and Structure on the Formation of Cement Clinker. Key Engineering Materials, 680, 429-434. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [4] | Darweesh, H.H.M. (2020) A Low Temperature Manufactured Portland Cement Clinker from Pulverized Waste of Fly Ash. International Journal of Materials Science and Applications, 9, 34-39. | 
                     
                                
                                    
                                        | [5] | Wu, K., Shi, H., De Schutter, G., et al. (2012) Preparation of Alinite Cement from Municipal Solid Waste Incineration Fly Ash. Cement and Concrete Composites, 34, 322-327. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [6] | Kleib, J., Aouad, G., Abriak, N.E., et al. (2021) Production of Portland Cement Clinker from French Municipal Solid Waste Incineration Bottom Ash. Case Studies in Construction Materials, 15, e00629. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [7] | Wu, K., Shi, H. and Guo, X. (2011) Utilization of Municipal Solid Waste Incineration Fly Ash for Sulfoaluminate Cement Clinker Production. Waste Management, 31, 2001-2008. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [8] | Li, J.H., Ma, H.W. and Zhao, H.W. (2007) Preparation of Sulphoaluminate-Alite Composite Mineralogical Phase Cement Clinker from High Alumina Fly Ash. Key Engineering Materials, 334, 421-424. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [9] | 赵艳荣, 陈平, 韦怀珺, 等. 利用粉煤灰、拜耳法赤泥制备贝利特硫铝酸盐水泥[J]. 桂林理工大学学报, 2015, 35(3): 581-584. | 
                     
                                
                                    
                                        | [10] | 杜延男. 利用粉煤灰替代硅灰制备水化硅酸镁水泥[D]: [硕士学位论文]. 大连: 大连理工大学, 2017. | 
                     
                                
                                    
                                        | [11] | Monshi, A. and Asgarani, M.K. (1999) Producing Portland Cement from Iron and Steel Slags and Limestone. Cement and Concrete Research, 29, 1373-1377. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [12] | Tsakiridis, P.E., Papadimitriou, G.D., Tsivilis, S. and Koroneos, C. (2008) Utilization of Steel Slag for Portland Cement Clinker Production. Journal of Hazardous Materials, 152, 805-811. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [13] | Cao, L., et al. (2019) Process to Utilize Crushed Steel Slag in Cement Industry Directly: Multi-Phased Clinker Sintering Technology. Journal of Cleaner Production, 217, 520-529. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [14] | Žibret, L., et al. (2021) The Incorporation of Steel Slag into Belite-Sulfoaluminate Cement Clinkers. Applied Sciences, 11, Article 1840. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [15] | 刘二南, 吴少鹏, 谢君, 等. 钢渣作为熟料烧成铁质校正原料的应用研究[J]. 武汉理工大学学报(交通科学与工程版), 2018, 42(2): 226-230. | 
                     
                                
                                    
                                        | [16] | 刘晶晶, 何春艳, 宋杰光, 等. 利用钢渣制备水泥熟料及性能研究[J]. 萍乡学院学报, 2020, 37(3): 111-116. | 
                     
                                
                                    
                                        | [17] | Mendes, B.C., Pedroti, L.G., Fontes, M.P.F., et al. (2019) Technical and Environmental Assessment of the Incorporation of Iron Ore Tailings in Construction Clay Bricks. Construction and Building Materials, 227, Article ID: 116669. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [18] | Carmignano, O.R., Vieira, S.S., Teixeira, A.P.C., et al. (2021) Iron Ore Tailings: Characterization and Applications. Journal of the Brazilian Chemical Society, 32, 1895-1911. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [19] | Reis, D.C., Quattrone, M., Souza, J.F.T., et al. (2021) Potential CO2 Reduction and Uptake Due to Industrialization and Efficient Cement Use in Brazil by 2050. Journal of Industrial Ecology, 25, 344-358. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [20] | Almeida, V.O., Silvestro, L., Gleize, P.J.P., et al. (2023) Application of Leached Iron Ore Tailings to Produce Sustainable Cements. Construction and Building Materials, 377, Article ID: 131095. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [21] | Young, G. and Yang, M. (2019) Preparation and Characterization of Portland Cement Clinker from Iron Ore Tailings. Construction and Building Materials, 197, 152-156. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [22] | 易龙生, 吴倩, 米宏成, 等. 利用铁尾矿制备发泡水泥[J]. 非金属矿, 2021, 44(1): 1-4. | 
                     
                                
                                    
                                        | [23] | 陈虎, 沈卫国, 单来, 等. 国内外铁尾矿排放及综合利用状况探讨[J]. 混凝土, 2012(2): 88-92. | 
                     
                                
                                    
                                        | [24] | 侯明昱, 朱先昌, 李国青, 等. 泡沫混凝土的研究与应用概述[J]. 硅酸盐通报, 2019, 38(2): 410-416. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [25] | 王军, 范琛. 发泡水泥的制备及其物理力学性能研究[J]. 新型建筑材料, 2019, 46(5): 152-155. | 
                     
                                
                                    
                                        | [26] | 王宏霞, 张文生, 叶家元. 铁尾矿替代铁粉制备硅酸盐水泥熟料的研究[C]//中国硅酸盐学会水泥分会. 中国硅酸盐学会水泥分会第六届学术年会论文摘要集. 北京: 中国建筑材料科学研究总院绿色建筑材料国家重点实验室, 2016: 75. | 
                     
                                
                                    
                                        | [27] | Chen, W., Geng, Y., Hong, J., et al. (2018) Life Cycle Assessment of Gold Production in China. Journal of Cleaner Production, 179, 143-150. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [28] | Olivier, G., De Wit, T., Brenguier, F., et al. (2018) Ambient Noise Love Wave Tomography at a Gold Mine Tailings Storage Facility. Geotechnique Letters, 8, 178-182. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [29] | Wang, Q., Yao, G., Zhu, X., et al. (2019) Preparation of Portland Cement with Gold Ore Tailings. Advances in Materials Science and Engineering, 2019, Article ID: 1324065. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [30] | Çelik, Ö., Elbeyli, I.Y. and Piskin, S. (2006) Utilization of Gold Tailings as an Additive in Portland Cement. Waste Management & Research, 24, 215-224. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [31] | 张国强, 肖国先, 郜志海, 等. 黄金尾矿制备高贝利特相胶凝材料试验研究[J]. 武汉理工大学学报, 2008, 30(11): 72-74, 89. | 
                     
                                
                                    
                                        | [32] | 郭家林, 王之宇. 金尾矿发泡水泥制备及性能研究[J]. 矿产综合利用, 2017(2): 105-108. | 
                     
                                
                                    
                                        | [33] | Jiao, R.M., Xing, P., Wang, C.Y., et al. (2017) Recovery of Iron from Copper Tailings via Low-Temperature Direct Reduction and Magnetic Separation: Process Optimization and Mineralogical Study. International Journal of Minerals, Metallurgy, and Materials, 24, 974-982. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [34] | Lü, C., Wang, Y., Qian, P., et al. (2018) Separation of Chalcopyrite and Pyrite from a Copper Tailing by Ammonium Humate. Chinese Journal of Chemical Engineering, 26, 1814-1821. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [35] | Pan, H., Cheng, Z., Zhou, G., et al. (2017) Geochemical and Mineralogical Characterization of Tailings of the Dexing Copper Mine, Jiangxi Province, China. Geochemistry: Exploration, Environment, Analysis, 17, 334-344. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [36] | Liu, S., Li, Q. and Song, J. (2018) Study on the Grinding Kinetics of Copper Tailing Powder. Powder Technology, 330, 105-113. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [37] | Gupta, R.C., Mehra, P. and Thomas, B.S. (2017) Utilization of Copper Tailing in Developing Sustainable and Durable Concrete. Journal of Materials in Civil Engineering, 29, Article ID: 04016274. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [38] | Jian, S., Gao, W., Lv, Y., et al. (2020) Potential Utilization of Copper Tailings in the Preparation of Low Heat Cement Clinker. Construction and Building Materials, 252, Article ID: 119130. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [39] | Cheng, Y., et al. (2023) Feasibility Study on Utilization of Copper Tailings as Raw Meal and Addition for Low Carbon Portland Cement Production. Construction and Building Materials, 382, Article ID: 131275. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [40] | 吴鑫, 徐迅, 毛作宾, 等. 铜尾矿全替代硅质原料制备水泥熟料的研究[J]. 非金属矿, 2023, 46(6): 40-44. | 
                     
                                
                                    
                                        | [41] | 倪明江, 焦有宙, 骆仲泱, 等. 金属尾矿作水泥混合材活性试验研究[J]. 环境科学学报, 2007, 27(5): 868-872. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [42] | Cho, B.S., Kim, Y.U., Kim, D.B. and Choi, S.J. (2018) Effect of Ferronickel Slag Powder on Microhydration Heat, Flow, Compressive Strength, and Drying Shrinkage of Mortar. Advances in Civil Engineering, 2018, Article ID: 6420238. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [43] | 吴春丽, 谢红波, 陈哲, 等. 镍铁渣资源化综合利用现状研究[J]. 广东建材, 2019, 35(6): 77-79. | 
                     
                                
                                    
                                        | [44] | 李小明, 沈苗, 王翀, 等. 镍渣资源化利用现状及发展趋势分析[J]. 材料导报, 2017, 31(5): 100-105. | 
                     
                                
                                    
                                        | [45] | Saha, A.K. and Sarker, P.K. (2017) Compressive Strength of Mortar Containing Ferronickel Slag as Replacement of Natural Sand. Procedia Engineering, 171, 689-694. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [46] | 高锋, 梁振佳, 雷西虎, 等. 镍铁渣硫酸浸出渣制备硅酸盐水泥熟料工艺研究[J]. 硅酸盐通报, 2023, 42(10): 3703-3709. [Google Scholar] [CrossRef] |