|
[1]
|
Citrin, D.E. (2017) Recent Developments in Radiotherapy. The New England Journal of Medicine, 377, 1065-1075. [Google Scholar] [CrossRef]
|
|
[2]
|
Demaria, S., Ng, B., Devitt, M.L., Babb, J.S., Kawashima, N., Liebes, L., and Formenti, S.C. (2004) Ionizing Radiation Inhibition of Distant Untreated Tumors (Abscopal Effect) Is Immune Mediated. International Journal of Radiation Oncology, Biology, Physics, 58, 862-870. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Mole, R.H. (1953) Whole Body Irradiation; Radiobiology or Medicine? The British Journal of Radiology, 26, 234-241. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Janopaul-Naylor, J.R., Shen, Y., Qian, D.C. and Buchwald, Z.S. (2021) The Abscopal Effect: A Review of Pre-Clinical and Clinical Advances. International Journal of Molecular Sciences, 22, Article 11061. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Grass, G.D., Krishna, N. and Kim, S. (2016) The Immune Mechanisms of Abscopal Effect in Radiation Therapy. Current Problems in Cancer, 40, 10-24. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Koukourakis, M.I. and Giatromanolaki, A. (2022) Tumor Draining Lymph Nodes, Immune Response, and Radiotherapy: Towards a Revisal of Therapeutic Principles. Biochimica et Biophysica Acta, 1877, Article 188704. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Andersson, U., Wang, H., Palmblad, K., Aveberger, A.C., Bloom, O., Erlandsson-Harris, H., Janson, A., Kokkola, R., Zhang, M., Yang, H. and Tracey, K.J. (2000) High Mobility Group 1 Protein (HMG-1) Stimulates Proinflammatory Cytokine Synthesis in Human Monocytes. The Journal of Experimental Medicine, 192, 565-570. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Zhang, Y.C., Jiang, G., Gao, H., Liu, H.M. and Liang, J. (2014) Influence of Ionizing Radiation on Ovarian Carcinoma SKOV-3 Xenografts in Nude Mice Under Hypoxic Conditions. Asian Pacific Journal of Cancer Prevention, 15, 2353-2358. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Wan, J. and Wu, W. (2016) Hyperthermia Induced HIF-1a Expression of Lung Cancer through AKT and ERK Signaling Pathways. Journal of Experimental & Clinical Cancer Research, 35, Article No. 119. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Vanpouille-Box, C., Alard, A., Aryankalayil, M.J., Sarfraz, Y., Diamond, J.M., Schneider, R.J., Inghirami, G., Coleman, C.N., Formenti, S.C. and Demaria, S. (2017) DNA Exonuclease Trex1 Regulates Radiotherapy-Induced Tumour Immunogenicity. Nature Communications, 8, Article No. 15618. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Pevzner, A.M., Tsyganov, M.M., Ibragimova, M.K. and Litvyakov, N.V. (2021) Abscopal Effect in the Radio and Immunotherapy. Radiation Oncology Journal, 39, 247-253. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Liu, X., Yao, J., Song, L., Zhang, S., Huang, T. and Li, Y. (2019) Local and Abscopal Responses in Advanced Intrahepatic Cholangiocarcinoma with Low TMB, MSS, pMMR and Negative PD-L1 Expression Following Combined Therapy of SBRT with PD-1 Blockade. Journal for Immunotherapy of Cancer, 7, Article 204. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Wersäll, P.J., Blomgren, H., Pisa, P., Lax, I., Kälkner, K.M. and Svedman, C. (2006) Regression of Non-Irradiated Metastases after Extracranial Stereotactic Radiotherapy in Metastatic Renal Cell Carcinoma. Acta Oncologica, 45, 493-497. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Hanahan D. (2022) Hallmarks of Cancer: New Dimensions. Cancer Discovery, 12, 31-46. [Google Scholar] [CrossRef]
|
|
[15]
|
Liu, J., Chen, Z., Li, Y., Zhao, W., Wu, J. and Zhang, Z. (2021) PD-1/PD-L1 Checkpoint Inhibitors in Tumor Immunotherapy. Frontiers in Pharmacology, 12, Article 731798. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Formenti, S.C. and Demaria, S. (2013) Combining Radiotherapy and Cancer Immunotherapy: A Paradigm Shift. Journal of the National Cancer Institute, 105, 256-265. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Ngwa, W., Irabor, O.C., Schoenfeld, J.D., Hesser, J., Demaria, S. and Formenti, S.C. (2018) Using Immunotherapy to Boost the Abscopal Effect. Nature Reviews Cancer, 18, 313-322. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Drake, C.G. (2012) Combination Immunotherapy Approaches. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 23, viii41-viii46. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Kang, J., Demaria, S. and Formenti, S. (2016) Current Clinical Trials Testing the Combination of Immunotherapy with Radiotherapy. Journal for Immunotherapy of Cancer, 4, Article 51. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Hao, Y., Yasmin-Karim, S., Moreau, M., Sinha, N., Sajo, E. and Ngwa, W. (2016) Enhancing Radiotherapy for Lung Cancer Using Immunoadjuvants Delivered in Situ from New Design Radiotherapy Biomaterials: A Preclinical Study. Physics in Medicine and Biology, 61, N697-N707. [Google Scholar] [CrossRef]
|
|
[21]
|
Twyman-Saint Victor, C., Rech, A.J., Maity, A., Rengan, R., Pauken, K.E., Stelekati, E., Benci, J.L., Xu, B., Dada, H., Odorizzi, P.M., Herati, R.S., Mansfield, K.D., Patsch, D., Amaravadi, R.K., Schuchter, L.M., Ishwaran, H., Mick, R., Pryma, D.A., Xu, X., Feldman, M.D. and Minn, A.J. (2015) Radiation and Dual Checkpoint Blockade Activate Non-Redundant Immune Mechanisms in Cancer. Nature, 520, 373-377. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Young, K.H., Baird, J.R., Savage, T., Cottam, B., Friedman, D., Bambina, S., Messenheimer, D.J., Fox, B., Newell, P., Bahjat, K.S., Gough, M.J. and Crittenden, M.R. (2016) Optimizing Timing of Immunotherapy Improves Control of Tumors by Hypofractionated Radiation Therapy. PLOS ONE, 11, e0157164. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Hiniker, S.M., Reddy, S.A., Maecker, H.T., Subrahmanyam, P.B., Rosenberg-Hasson, Y., Swetter, S.M., Saha, S., Shura, L. and Knox, S.J. (2016) A Prospective Clinical Trial Combining Radiation Therapy with Systemic Immunotherapy in Metastatic Melanoma. International Journal of Radiation Oncology, Biology, Physics, 96, 578-588. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Dovedi, S.J. and Illidge, T.M. (2015) The Antitumor Immune Response Generated by Fractionated Radiation Therapy May be Limited by Tumor Cell Adaptive Resistance and Can be Circumvented by PD-L1 Blockade. Oncoimmunology, 4, e1016709. [Google Scholar] [CrossRef]
|
|
[25]
|
Deng, L., Liang, H., Burnette, B., Beckett, M., Darga, T., Weichselbaum, R.R. and Fu, Y.X. (2014) Irradiation and Anti-PD-L1 Treatment Synergistically Promote Antitumor Immunity in Mice. The Journal of Clinical Investigation, 124, 687-695. [Google Scholar] [CrossRef]
|
|
[26]
|
Dagoglu, N., Karaman, S., Caglar, H.B. and Oral, E.N. (2019) Abscopal Effect of Radiotherapy in the Immunotherapy Era: Systematic Review of Reported Cases. Cureus, 11, e4103. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Kelly, R.J., Ajani, J.A., Kuzdzal, J., Zander, T., Van Cutsem, E., Piessen, G., Mendez, G., Feliciano, J., Motoyama, S., Lièvre, A., Uronis, H., Elimova, E., Grootscholten, C., Geboes, K., Zafar, S., Snow, S., Ko, A.H., Feeney, K., Schenker, M., Kocon, P., et al., for the CheckMate 577 Investigators (2021) Adjuvant Nivolumab in Resected Esophageal or Gastroesophageal Junction Cancer. The New England Journal of Medicine, 384, 1191-1203. [Google Scholar] [CrossRef]
|
|
[28]
|
Antonia, S.J., Villegas, A., Daniel, D., Vicente, D., Murakami, S., Hui, R., Kurata, T., Chiappori, A., Lee, K.H., de Wit, M., Cho, B.C., Bourhaba, M., Quantin, X., Tokito, T., Mekhail, T., Planchard, D., Kim, Y.C., Karapetis, C.S., Hiret, S., Ostoros, G. and PACIFIC Investigators (2018) Overall Survival with Durvalumab after Chemoradiotherapy in Stage III NSCLC. The New England Journal of Medicine, 379, 2342-2350. [Google Scholar] [CrossRef]
|
|
[29]
|
Golden, E.B., Chhabra, A., Chachoua, A., Adams, S., Donach, M., Fenton-Kerimian, M., Friedman, K., Ponzo, F., Babb, J.S., Goldberg, J., Demaria, S. and Formenti, S.C. (2015) Local Radiotherapy and Granulocyte-Macrophage Colony-Stimulating Factor to Generate Abscopal Responses in Patients with Metastatic Solid Tumours: A Proof-of-Principle Trial. The Lancet Oncology, 16, 795-803. [Google Scholar] [CrossRef]
|
|
[30]
|
Mampuya, W.A., Bouchaab, H., Schaefer, N., Kinj, R., La Rosa, S., Letovanec, I., Ozsahin, M., Bourhis, J., Coukos, G., Peters, S. and Herrera, F.G. (2021) Abscopal Effect in a Patient with Malignant Pleural Mesothelioma Treated with Palliative Radiotherapy and Pembrolizumab. Clinical and Translational Radiation Oncology, 27, 85-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Rodríguez-Ruiz, M.E., Vanpouille-Box, C., Melero, I., Formenti, S.C. and Demaria, S. (2018) Immunological Mechanisms Responsible for Radiation-Induced Abscopal Effect. Trends in Immunology, 39, 644-655. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Kho, V.M., Mekers, V.E., Span, P.N., Bussink, J. and Adema, G.J. (2021) Radiotherapy and cGAS/STING Signaling: Impact on MDSCs in the Tumor Microenvironment. Cellular Immunology, 362, Article 104298. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Wolf, D., Sopper, S., Pircher, A., Gastl, G. and Wolf, A.M. (2015) Treg(s) in Cancer: Friends or Foe? Journal of Cellular Physiology, 230, 2598-2605. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Beauford, S.S., Kumari, A. and Garnett-Benson, C. (2020) Ionizing Radiation Modulates the Phenotype and Function of Human CD4 Induced Regulatory T Cells. BMC Immunology, 21, Article No. 18. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Paluskievicz, C.M., Cao, X., Abdi, R., Zheng, P., Liu, Y. and Bromberg, J.S. (2019) T Regulatory Cells and Priming the Suppressive Tumor Microenvironment. Frontiers in Immunology, 10, Article 2453. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Barker, H.E., Paget, J.T., Khan, A.A. and Harrington, K. J. (2015) The Tumour Microenvironment after Radiotherapy: Mechanisms of Resistance and Recurrence. Nature Reviews Cancer, 15, 409-425. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Vatner, R.E., Cooper, B.T., Vanpouille-Box, C., Demaria, S. and Formenti, S. C. (2014) Combinations of Immunotherapy and Radiation in Cancer Therapy. Frontiers in Oncology, 4, Article 325. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Facciabene, A., Peng, X., Hagemann, I.S., Balint, K., Barchetti, A., Wang, L.P., Gimotty, P.A., Gilks, C.B., Lal, P., Zhang, L. and Coukos, G. (2011) Tumour Hypoxia Promotes Tolerance and Angiogenesis via CCL28 and Treg Cells. Nature, 475, 226-230. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Camphausen, K., Moses, M.A., Ménard, C., Sproull, M., Beecken, W.D., Folkman, J. and O’Reilly, M.S. (2003) Radiation Abscopal Antitumor Effect Is Mediated through p53. Cancer Research, 63, 1990-1993.
|
|
[40]
|
Strigari, L., Mancuso, M., Ubertini, V., Soriani, A., Giardullo, P., Benassi, M., D’Alessio, D., Leonardi, S., Soddu, S. and Bossi, G. (2015) Abscopal Effect of Radiation Therapy: Interplay between Radiation Dose and p53 Status. International Journal of Radiation Biology, 91, 294. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Craig, D.J., Nanavaty, N.S., Devanaboyina, M., Stanbery, L., Hamouda, D., Edelman, G., Dworkin, L. and Nemunaitis, J.J. (2021) The Abscopal Effect of Radiation Therapy. Future Oncology (London, England), 17, 1683-1694. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Wilkins, A., McDonald, F., Harrington, K. and Melcher, A. (2019) Radiotherapy Enhances Responses of Lung Cancer to CTLA-4 Blockade. Journal for Immunotherapy of Cancer, 7, Article 64. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Siva, S., Lobachevsky, P., MacManus, M.P., Kron, T., Möller, A., Lobb, R.J., Ventura, J., Best, N., Smith, J., Ball, D. and Martin, O.A. (2016) Radiotherapy for Non-Small Cell Lung Cancer Induces DNA Damage Response in Both Irradiated and Out-of-Field Normal Tissues. Clinical Cancer Research, 22, 4817-4826. [Google Scholar] [CrossRef]
|