|
[1]
|
Elsheikh, A., Wang, D. and Pye, D. (2007) Determination of the Modulus of Elasticity of the Human Cornea. Journal of Refractive Surgery, 23, 808-818. [Google Scholar] [CrossRef]
|
|
[2]
|
Boyce, B.L., Grazier, J.M., Jones, R.E., et al. (2008) Full-Field Deformation of Bovine Cornea under Constrained Inflation Conditions. Biomaterials, 29, 3896-3904. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Zhao, Y., Hu, G., Yan, Y., et al. (2022) Biomechanical Analysis of Ocular Diseases and Its in Vitro Study Methods. Biomedical Engineering Online, 21, Article No. 49. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Li, F., Wang, K. and Liu, Z. (2023) In Vivo Biomechanical Measurements of the Cornea. Bioengineering, 10, Article 120. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Luce, D.A. (2005) Determining in Vivo Biomechanical Properties of the Cornea with an Ocular Response Analyzer. Journal of Cataract and Refractive Surgery, 31, 156-162. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Qin, X., Yu, M., Zhang, H., et al. (2019) The Mechanical Interpretation of Ocular Response Analyzer Parameters. BioMed Research International, 2019, Article ID: 5701236. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Hallahan, K.M., Sinha Roy, A., Ambrosio Jr., R., et al. (2014) Discriminant Value of Custom Ocular Response Analyzer Waveform Derivatives in Keratoconus. Ophthalmology, 121, 459-468. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Fontes, B.M., Ambrosio Jr., R., Jardim, D., et al. (2010) Corneal Biomechanical Metrics and Anterior Segment Parameters in Mild Keratoconus. Ophthalmology, 117, 673-679. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Luz, A., Lopes, B., Hallahan, K.M., et al. (2016) Enhanced Combined Tomography and Biomechanics Data for Distinguishing Forme Fruste Keratoconus. Journal of Refractive Surgery, 32, 479-494. [Google Scholar] [CrossRef]
|
|
[10]
|
Yang, K., Xu, L., Fan, Q., et al. (2020) Association between Corneal Stiffness Parameter at the First Applanation and Keratoconus Severity. Journal of Ophthalmology, 2020, Article ID: 6667507. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Qassim, A., Mullany, S., Abedi, F., et al. (2021) Corneal Stiffness Parameters Are Predictive of Structural and Functional Progression in Glaucoma Suspect Eyes. Ophthalmology, 128, 993-1004. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Vinciguerra, R., Ambrosio Jr., R., Elsheikh, A., et al. (2016) Detection of Keratoconus with a New Biomechanical Index. Journal of Refractive Surgery, 32, 803-810. [Google Scholar] [CrossRef]
|
|
[13]
|
Herber, R., Hasanli, A., Lenk, J., et al. (2022) Evaluation of Corneal Biomechanical Indices in Distinguishing between Normal, Very Asymmetric, and Bilateral Keratoconic Eyes. Journal of Refractive Surgery, 38, 364-372. [Google Scholar] [CrossRef]
|
|
[14]
|
Eliasy, A., Chen, K.J., Vinciguerra, R., et al. (2019) Determination of Corneal Biomechanical Behavior In-Vivo for Healthy Eyes Using CorVis ST Tonometry: Stress-Strain Index. Frontiers in Bioengineering and Biotechnology, 7, Article 105. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Miao, Y., Ma, X., Qu, Z., et al. (2023) Performance of Updated Stress-Strain Index in Differentiating Between Normal, Forme-Fruste, Subclinical and Clinical Keratoconic Eyes. American Journal of Ophthalmology, 258, 196-207. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Sedaghat, M.R., Momeni-Moghaddam, H., Heravian, J., et al. (2023) Detection Ability of Corneal Biomechanical Parameters for Early Diagnosis of Ectasia. Eye, 37, 1665-1672. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Ambrosio Jr., R., Lopes, B.T., Faria-Correia, F., et al. (2017) Integration of Scheimpflug-Based Corneal Tomography and Biomechanical Assessments for Enhancing Ectasia Detection. Journal of Refractive Surgery, 33, 434-443. [Google Scholar] [CrossRef]
|
|
[18]
|
Liu, Y., Zhang, Y. and Chen, Y. (2021) Application of a Scheimpflug-Based Biomechanical Analyser and Tomography in the Early Detection of Subclinical Keratoconus in Chinese Patients. BMC Ophthalmology, 21, Article No. 339. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Prevedel, R., Diz-Munoz, A., Ruocco, G. and Antonacci, G. (2019) Brillouin Microscopy: An Emerging Tool for Mechanobiology. Nature Methods, 16, 969-977. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Scarcelli, G., Kim, P. and Yun, S.H. (2011) In Vivo Measurement of Age-Related Stiffening in the Crystalline Lens by Brillouin Optical Microscopy. Biophysical Journal, 101, 1539-1545. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Scarcelli, G. and Yun, S.H. (2012) In Vivo Brillouin Optical Microscopy of the Human Eye. Optics Express, 20, 9197-9202. [Google Scholar] [CrossRef]
|
|
[22]
|
Shao, P., Eltony, A.M., Seiler, T.G., et al. (2019) Spatially-Resolved Brillouin Spectroscopy Reveals Biomechanical Abnormalities in Mild to Advanced Keratoconus in Vivo. Scientific Reports, 9, Article No. 7467. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Eltony, A.M., Shao, P. and Yun, S.H. (2022) Measuring Mechanical Anisotropy of the Cornea with Brillouin Microscopy. Nature Communications, 13, Article No. 1354. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Lan, G., Twa, M.D., Song, C., et al. (2023) In Vivo Corneal Elastography: A Topical Review of Challenges and Opportunities. Computational and Structural Biotechnology Journal, 21, 2664-2687. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Schmitt, J. (1998) OCT Elastography: Imaging Microscopic Deformation and Strain of Tissue. Optics Express, 3, 199-211. [Google Scholar] [CrossRef]
|
|
[26]
|
Zaitsev, V.Y., Matveyev, A.L., Matveev, L.A., et al. (2021) Strain and Elasticity Imaging in Compression Optical Coherence Elastography: The Two-Decade Perspective and Recent Advances. Journal of Biophotonics, 14, e202000257. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Ferguson, T.J., Singuri, S., Jalaj, S., et al. (2021) Depth-Resolved Corneal Biomechanical Changes Measured via Optical Coherence Elastography Following Corneal Crosslinking. Translational Vision Science & Technology, 10, Article 7. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Nair, A., Singh, M., Aglyamov, S., et al. (2021) Heartbeat Optical Coherence Elastography: Corneal Biomechanics in Vivo. Journal of Biomedical Optics, 26, Article ID: 020502. [Google Scholar] [CrossRef]
|
|
[29]
|
Zvietcovich, F., Pongchalee, P., Meemon, P., et al. (2019) Reverberant 3D Optical Coherence Elastography Maps the Elasticity of Individual Corneal Layers. Nature Communications, 10, Article No. 4895. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Ge, G.R., Tavakol, B., Usher, D.B., et al. (2022) Assessing Corneal Cross-Linking with Reverberant 3D Optical Coherence Elastography. Journal of Biomedical Optics, 27, Article ID: 026003. [Google Scholar] [CrossRef]
|
|
[31]
|
Tanter, M., Touboul, D., Gennisson, J.L., et al. (2009) High-Resolution Quantitative Imaging of Cornea Elasticity Using Supersonic Shear Imaging. IEEE Transactions on Medical Imaging, 28, 1881-1893. [Google Scholar] [CrossRef]
|
|
[32]
|
Nguyen, T.M., Aubry, J.F., Fink, M., et al. (2014) In Vivo Evidence of Porcine Cornea Anisotropy Using Supersonic Shear Wave Imaging. Investigative Ophthalmology and Visual Science, 55, 7545-7552. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Shih, C.C., Qian, X., Ma, T., et al. (2018) Quantitative Assessment of Thin-Layer Tissue Viscoelastic Properties Using Ultrasonic Micro-Elastography with Lamb Wave Model. IEEE Transactions on Medical Imaging, 37, 1887-1898. [Google Scholar] [CrossRef]
|
|
[34]
|
Vakoc, B.J., Tearney, G.J. and Bouma, B.E. (2009) Statistical Properties of Phase-Decorrelation in Phase-Resolved Doppler Optical Coherence Tomography. IEEE Transactions on Medical Imaging, 28, 814-821. [Google Scholar] [CrossRef]
|
|
[35]
|
Blackburn, B.J., Gu, S., Ford, M.R., et al. (2019) Noninvasive Assessment of Corneal Crosslinking with Phase-Decorrelation Optical Coherence Tomography. Investigative Ophthalmology and Visual Science, 60, 41-51. [Google Scholar] [CrossRef] [PubMed]
|