|
[1]
|
Sasaki, K., Ravandi, F., Kadia, T.M., et al. (2021) De Novo Acute Myeloid Leukemia: A Population-Based Study of Outcome in the United States Based on the Surveillance, Epidemiology, and End Results (SEER) Database, 1980 to 2017. Cancer, 127, 2049-2061. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Shallis, R.M., Wang, R., Davidoff, A., et al. (2019) Epidemiology of Acute Myeloid Leukemia: Recent Progress and Enduring Challenges. Blood Reviews, 36, 70-87. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Kantarjian, H., Kadia, T., Dinardo, C., et al. (2021) Acute Myeloid Leukemia: Current Progress and Future Directions. Blood Cancer Journal, 11, Article No. 41. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Krug, U., Röllig, C., Koschmieder, A., et al. (2010) Complete Remission and Early Death after Intensive Chemotherapy in Patients Aged 60 Years or Older with Acute Myeloid Leukaemia: A Web-Based Application for Prediction of Outcomes. The Lancet, 376, 2000-2008. [Google Scholar] [CrossRef]
|
|
[5]
|
Sasaki, K., Kadia, T., Begna, K., et al. (2022) Prediction of Early (4-Week) Mortality in Acute Myeloid Leukemia with Intensive Chemotherapy. American Journal of Hematology, 97, 68-78. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Creutzig, U., Zimmermann, M., Reinhardt, D., et al. (2016) Changes in Cytogenetics and Molecular Genetics in Acute Myeloid Leukemia from Childhood to Adult Age Groups. Cancer, 122, 3821-3830. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Mrózek, K., Heinonen, K. and Bloomfield, C.D. (2001) Clinical Importance of Cytogenetics in Acute Myeloid Leukaemia. Best Practice & Research Clinical Haematology, 14, 19-47. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Saultz, J.N. and Garzon, R. (2016) Acute Myeloid Leukemia: A Concise Review. Journal of Clinical Medicine, 5, Article 33. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Craig, C.M. and Schiller, G.J. (2008) Acute Myeloid Leukemia in the Elderly: Conventional and Novel Treatment Approaches. Blood Reviews, 22, 221-234. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Ley, T.J., Miller, C., Ding, L., et al. (2013) Genomic and Epigenomic Landscapes of Adult De Novo Acute Myeloid Leukemia. New England Journal of Medicine, 368, 2059-2074. [Google Scholar] [CrossRef]
|
|
[11]
|
Grimwade, D., Hills, R.K., Moorman, A.V., et al. (2010) Refinement of Cytogenetic Classification in Acute Myeloid Leukemia: Determination of Prognostic Significance of Rare Recurring Chromosomal Abnormalities among 5876 Younger Adult Patients Treated in the United Kingdom Medical Research Council Trials. Blood, 116, 354-365. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Arber, D.A., Orazi, A., Hasserjian, R.P., et al. (2022) International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: Integrating Morphologic, Clinical, and Genomic Data. Blood, 140, 1200-1228.
|
|
[13]
|
Khoury, J.D., Solary, E., Abla, O., et al. (2022) The 5th Edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia, 36, 1703-1719. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Döhner, H., Wei, A.H., Appelbaum, F.R., et al. (2022) Diagnosis and Management of AML in Adults: 2022 Recommendations from an International Expert Panel on Behalf of the ELN. Blood, 140, 1345-1377. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Döhner, H., Weisdorf, D.J. and Bloomfield, C.D. (2015) Acute Myeloid Leukemia. New England Journal of Medicine, 373, 1136-1152. [Google Scholar] [CrossRef]
|
|
[16]
|
Awada, H., Durmaz, A., Gurnari, C., et al. (2021) Machine Learning Integrates Genomic Signatures for Subclassification Beyond Primary and Secondary Acute Myeloid Leukemia. Blood, 138, 1885-1895. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Lugthart, S., Gröschel, S., Beverloo, H.B., et al. (2010) Clinical, Molecular, and Prognostic Significance of WHO Type inv(3)(q21q26.2)/t(3;3)(q21;q26.2) and Various Other 3q Abnormalities in Acute Myeloid Leukemia. Journal of Clinical Oncology, 28, 3890-3898. [Google Scholar] [CrossRef]
|
|
[18]
|
Ottema, S., Mulet-Lazaro, R., Beverloo, H.B., et al. (2020) Atypical 3q26/MECOM Rearrangements Genocopy inv(3)/t(3;3) in Acute Myeloid Leukemia. Blood, 136, 224-234. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Kayser, S., Hills, R.K., Langova, R., et al. (2021) Characteristics and Outcome of Patients with Acute Myeloid Leukaemia and t(8;16)(p11;p13): Results from an International Collaborative Study. British Journal of Haematology, 192, 832-842. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Lo, M.C., Peterson, L.F., Yan, M., et al. (2013) JAK Inhibitors Suppress t(8;21) Fusion Protein-Induced Leukemia. Leukemia, 27, 2272-2279. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Kadia, T.M., Ravandi, F., Cortes, J., et al. (2016) New Drugs in Acute Myeloid Leukemia. Annals of Oncology, 27, 770-778. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Othus, M., Garcia-Manero, G., Godwin, J.E., et al. (2023) Improved Outcomes with “7 3” Induction Chemotherapy for Acute Myeloid Leukemia over the Past Four Decades: Analysis of SWOG Trial Data. Haematologica, 108, 42-47. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Stahl, M., Deveaux, M., Montesinos, P., et al. (2018) Hypomethylating Agents in Relapsed and Refractory AML: Outcomes and Their Predictors in a Large International Patient Cohort. Blood Advances, 2, 923-932. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
郑冬丽. CAG方案联合参麦注射液治疗老年急性髓系白血病患者的临床效果[J]. 中国老年学杂志, 2010, 30(16): 2378-2379.
|
|
[25]
|
吴德沛, 吴小津, 石培民, 等. 含G-CSF的预激方案用于难治性或复发性急性髓系白血病治疗的临床研究[J]. 中华血液学杂志, 2004, 25(1): 51-52.
|
|
[26]
|
徐晓梅. 地西他滨联合CAG方案治疗急性髓系白血病患者的临床观察[J]. 现代诊断与治疗, 2020, 31(4): 564-566.
|
|
[27]
|
Pollyea, D.A., Pratz, K., Letai, A., et al. (2021) Venetoclax with Azacitidine or Decitabine in Patients with Newly Diagnosed Acute Myeloid Leukemia: Long Term Follow-Up from a Phase 1b Study. American Journal of Hematology, 96, 208-217. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Becker, H., Suciu, S., Rüter, B.H., et al. (2015) Decitabine versus Best Supportive Care in Older Patients with Refractory Anemia with Excess Blasts in Transformation (RAEBt)-Results of a Subgroup Analysis of the Randomized Phase III Study 06011 of the EORTC Leukemia Cooperative Group and German MDS Study Group (GMDSSG). Annals of Hematology, 94, 2003-2013. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Dombret, H., Seymour, J.F., Butrym, A., et al. (2015) International Phase 3 Study of Azacitidine Vs Conventional Care Regimens in Older Patients with Newly Diagnosed AML with >30% Blasts. Blood, 126, 291-299. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Kantarjian, H.M., Thomas, X.G., Dmoszynska, A., et al. (2012) Multicenter, Randomized, Open-Label, Phase III Trial of Decitabine versus Patient Choice, with Physician Advice, of Either Supportive Care or Low-Dose Cytarabine for the Treatment of Older Patients with Newly Diagnosed Acute Myeloid Leukemia. Journal of Clinical Oncology, 30, 2670-2677. [Google Scholar] [CrossRef]
|
|
[31]
|
Dinardo, C.D., Maiti, A., Rausch, C.R., et al. (2020) 10-Day Decitabine with Venetoclax for Newly Diagnosed Intensive Chemotherapy Ineligible, and Relapsed or Refractory Acute Myeloid Leukaemia: A Single-Centre, Phase 2 Trial. The Lancet Haematology, 7, E724-E736. [Google Scholar] [CrossRef]
|
|
[32]
|
Dinardo, C.D., Jonas, B.A., Pullarkat, V., et al. (2020) Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. New England Journal of Medicine, 383, 617-629. [Google Scholar] [CrossRef]
|
|
[33]
|
Konopleva, M. and Letai, A. (2018) BCL-2 Inhibition in AML: An Unexpected Bonus? Blood, 132, 1007-1012. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Park, S., Cho, B.S. and Kim, H.J. (2020) New Agents in Acute Myeloid Leukemia (AML). Blood Research, 55, S14-S18. [Google Scholar] [CrossRef]
|
|
[35]
|
Lagadinou, E.D., Sach, A., Callahan, K., et al. (2013) BCL-2 Inhibition Targets Oxidative Phosphorylation and Selectively Eradicates Quiescent Human Leukemia Stem Cells. Cell Stem Cell, 12, 329-341. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Lachowiez, C.A., Reville, P.K., Kantarjian, H., et al. (2022) Venetoclax Combined with Induction Chemotherapy in Patients with Newly Diagnosed Acute Myeloid Leukaemia: A Post-Hoc, Propensity Score-Matched, Cohort Study. The Lancet Haematology, 9, E350-E360. [Google Scholar] [CrossRef]
|
|
[37]
|
Wang, H., Mao, L., Yang, M., et al. (2022) Venetoclax Plus 3 7 Daunorubicin and Cytarabine Chemotherapy as First-Line Treatment for Adults with Acute Myeloid Leukaemia: A Multicentre, Single-Arm, Phase 2 Trial. The Lancet Haematology, 9, E415-E424. [Google Scholar] [CrossRef]
|
|
[38]
|
Chua, C.C., Roberts, A.W., Reynolds, J., et al. (2020) Chemotherapy and Venetoclax in Elderly Acute Myeloid Leukemia Trial (CAVEAT): A Phase Ib Dose-Escalation Study of Venetoclax Combined with Modified Intensive Chemotherapy. Journal of Clinical Oncology, 38, 3506-3517. [Google Scholar] [CrossRef]
|
|
[39]
|
Dinardo, C.D., Lachowiez, C.A., Takahashi, K., et al. (2021) Venetoclax Combined with FLAG-IDA Induction and Consolidation in Newly Diagnosed and Relapsed or Refractory Acute Myeloid Leukemia. Journal of Clinical Oncology, 39, 2768-2778. [Google Scholar] [CrossRef]
|
|
[40]
|
Döhner, H., Wei, A.H. and Löwenberg, B. (2021) Towards Precision Medicine for AML. Nature Reviews Clinical Oncology, 18, 577-590. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Daver, N., Schlenk, R.F., Russell, N.H., et al. (2019) Targeting FLT3 Mutations in AML: Review of Current Knowledge and Evidence. Leukemia, 33, 299-312. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Döhner, K., Thiede, C., Jahn, N., et al. (2020) Impact of NPM1/FLT3-ITD Genotypes Defined by the 2017 European LeukemiaNet in Patients with Acute Myeloid Leukemia. Blood, 135, 371-380.
|
|
[43]
|
Patnaik, M.M. (2018) The Importance of FLT3 Mutational Analysis in Acute Myeloid Leukemia. Leukemia & Lymphoma, 59, 2273-2286. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Döhner, H., Estey, E., Grimwade, D., et al. (2017) Diagnosis and Management of AML in Adults: 2017 ELN Recommendations from an International Expert Panel. Blood, 129, 424-447. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Wang, E.S. (2019) Incorporating FLT3 Inhibitors in the Frontline Treatment of FLT3 Mutant Acute Myeloid Leukemia. Best Practice & Research Clinical Haematology, 32, 154-162. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Perl, A.E., Martinelli, G., Cortes, J.E., et al. (2019) Gilteritinib or Chemotherapy for Relapsed or Refractory FLT3-Mutated AML. New England Journal of Medicine, 381, 1728-1740. [Google Scholar] [CrossRef]
|
|
[47]
|
Hosono, N., Yokoyama, H., Aotsuka, N., et al. (2021) Gilteritinib versus Chemotherapy in Japanese Patients with FLT3-Mutated Relapsed/Refractory Acute Myeloid Leukemia. International Journal of Clinical Oncology, 26, 2131-2141. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Cortes, J.E., Tallman, M.S., Schiller, G.J., et al. (2018) Phase 2b Study of 2 Dosing Regimens of Quizartinib Monotherapy in FLT3-ITD-Mutated, Relapsed or Refractory AML. Blood, 132, 598-607. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Cortes, J.E., Khaled, S., Martinelli, G., et al. (2019) Quizartinib versus Salvage Chemotherapy in Relapsed or Refractory FLT3-ITD Acute Myeloid Leukaemia (QuANTUM-R): A Multicentre, Randomised, Controlled, Open-Label, Phase 3 Trial. The Lancet Oncology, 20, 984-997. [Google Scholar] [CrossRef]
|
|
[50]
|
Cortes, J., Perl, A.E., Döhner, H., et al. (2018) Quizartinib, an FLT3 Inhibitor, as Monotherapy in Patients with Relapsed or Refractory Acute Myeloid Leukaemia: An Open-Label, Multicentre, Single-Arm, Phase 2 Trial. The Lancet Oncology, 19, 889-903. [Google Scholar] [CrossRef]
|
|
[51]
|
Erba, H., Montesinos, P., Vrhovac, R., et al. (2022) Quizartinib Prolonged Overall Survival (OS) vs Placebo plus Intensive Induction and Consolidation Therapy Followed by Single-Agent Continuation in Patients Aged 18-75 LYears with Newly Diagnosed FLT3-Internal Tandem Duplication Positive (FLT3-ITD ) Acute Myeloid Leukemia (AML). Clinical Lymphoma Myeloma & Leukemia, 22, S208-S209. [Google Scholar] [CrossRef]
|
|
[52]
|
Lachowiez, C., Dinardo, C.D. and Stein, E. (2022) Combining Isocitrate Dehydrogenase Inhibitors with Existing Regimens in Acute Myeloid Leukemia: An Evolving Treatment Landscape. The Cancer Journal, 28, 21-28. [Google Scholar] [CrossRef]
|
|
[53]
|
Chou, W.C., Lei, W.C., Ko, B.S., et al. (2011) The Prognostic Impact and Stability of Isocitrate Dehydrogenase 2 Mutation in Adult Patients with Acute Myeloid Leukemia. Leukemia, 25, 246-253. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Paschka, P., Schlenk, R.F., Gaidzik, V.I., et al. (2010) IDH1 and IDH2 Mutations Are Frequent Genetic Alterations in Acute Myeloid Leukemia and Confer Adverse Prognosis in Cytogenetically Normal Acute Myeloid Leukemia with NPM1 Mutation without FLT3 Internal Tandem Duplication. Journal of Clinical Oncology, 28, 3636-3643. [Google Scholar] [CrossRef]
|
|
[55]
|
Stein, E.M., Dinardo, C.D., Pollyea, D.A., et al. (2017) Enasidenib in Mutant IDH2 Relapsed or Refractory Acute Myeloid Leukemia. Blood, 130, 722-731. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Pollyea, D.A., Tallman, M.S., De Botton, S., et al. (2019) Enasidenib, an Inhibitor of Mutant IDH2 Proteins, Induces Durable Remissions in Older Patients with Newly Diagnosed Acute Myeloid Leukemia. Leukemia, 33, 2575-2584. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Dinardo, C.D., Stein, E.M., De Botton, S., et al. (2018) Durable Remissions with Ivosidenib in IDH1-Mutated Relapsed or Refractory AML. New England Journal of Medicine, 378, 2386-2398.
|
|
[58]
|
Roboz, G.J., Dinardo, C.D., Stein, E.M, et al. (2020) Ivosidenib Induces Deep Durable Remissions in Patients with Newly Diagnosed IDH1-Mutant Acute Myeloid Leukemia. Blood, 135, 463-471. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Martelli, M.P., Martino, G., Cardinali, V., et al. (2020) Enasidenib and Ivosidenib in AML. Minerva Medica, 111, 411-426. [Google Scholar] [CrossRef]
|
|
[60]
|
Dinardo, C.D., Stein, A.S., Stein, E.M., et al. (2021) Mutant Isocitrate Dehydrogenase 1 Inhibitor Ivosidenib in Combination with Azacitidine for Newly Diagnosed Acute Myeloid Leukemia. Journal of Clinical Oncology, 39, 57-65. [Google Scholar] [CrossRef]
|
|
[61]
|
Montesinos, P., Recher, C., Vives, S., et al. (2022) Ivosidenib and Azacitidine in IDH1-Mutated Acute Myeloid Leukemia. New England Journal of Medicine, 386, 1519-1531. [Google Scholar] [CrossRef]
|
|
[62]
|
Dinardo, C.D., Schuh, A.C., Stein, E.M., et al. (2021) Enasidenib plus Azacitidine versus Azacitidine Alone in Patients with Newly Diagnosed, Mutant-IDH2 Acute Myeloid Leukaemia (AG221-AML-005): A Single-Arm, Phase 1b and Randomised, Phase 2 Trial. The Lancet Oncology, 22, 1597-1608. [Google Scholar] [CrossRef]
|
|
[63]
|
De Botton, S., Montesinos, P., Schuh, A.C., et al. (2023) Enasidenib vs Conventional Care in Older Patients with Late-Stage Mutant-IDH2 Relapsed/Refractory AML: A Randomized Phase 3 Trial. Blood, 141, 156-167. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
De Botton, S., Risueno, A., Schuh, A.C., et al. (2022) Overall Survival by IDH2 Mutant Allele (R140 or R172) in Patients with Late-Stage Mutant-IDH2 Relapsed or Refractory Acute Myeloid Leukemia Treated with Enasidenib or Conventional Care Regimens in the Phase 3 IDHENTIFY Trial. Journal of Clinical Oncology, 40, 7005-7005. [Google Scholar] [CrossRef]
|
|
[65]
|
Short, N.J., Montalban-Bravo, G., Hwang, H., et al. (2020) Prognostic and Therapeutic Impacts of Mutant TP53 Variant Allelic Frequency in Newly Diagnosed Acute Myeloid Leukemia. Blood Advances, 4, 5681-5689. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Weinberg, O.K., Siddon, A., Madanat, Y.F., et al. (2022) TP53 Mutation Defines a Unique Subgroup within Complex Karyotype De Novo and Therapy-Related MDS/AML. Blood Advances, 6, 2847-2853. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Tashakori, M., Kadia, T., Loghavi, S., et al. (2022) TP53 Copy Number and Protein Expression Inform Mutation Status Across Risk Categories in Acute Myeloid Leukemia. Blood, 140, 58-72. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Bejar, R., Stevenson, K.E., Caughey, B., et al. (2014) Somatic Mutations Predict Poor Outcome in Patients with Myelodysplastic Syndrome after Hematopoietic Stem-Cell Transplantation. Journal of Clinical Oncology, 32, 2691-2698. [Google Scholar] [CrossRef]
|
|
[69]
|
Badar, T., Atallah, E., Shallis, R., et al. (2023) Survival of TP53-Mutated Acute Myeloid Leukemia Patients Receiving Allogeneic Stem Cell Transplantation after First Induction or Salvage Therapy: Results from the Consortium on Myeloid Malignancies and Neoplastic Diseases (COMMAND). Leukemia, 37, 799-806. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Sallman, D.A. (2020) To Target the Untargetable: Elucidation of Synergy of APR-246 and Azacitidine in TP53 Mutant Myelodysplastic Syndromes and Acute Myeloid Leukemia. Haematologica, 105, 1470-1472. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Cluzeau, T., Sebert, M., Rahme, R., et al. (2021) Eprenetapopt plus Azacitidine in TP53-Mutated Myelodysplastic Syndromes and Acute Myeloid Leukemia: A Phase II Study by the Groupe Francophone Des Myélodysplasies (GFM). Journal of Clinical Oncology, 39, 1575-1583. [Google Scholar] [CrossRef]
|
|
[72]
|
Mishra, A., Tamari, R., Dezern, A.E., et al. (2022) Eprenetapopt plus Azacitidine after Allogeneic Hematopoietic Stem-Cell Transplantation for TP53-Mutant Acute Myeloid Leukemia and Myelodysplastic Syndromes. Journal of Clinical Oncology, 40, 3985-3993. [Google Scholar] [CrossRef]
|
|
[73]
|
Feld, J., Silverman, L.R. and Navada, S.C. (2021) Forsaken Pharmaceutical: Glasdegib in Acute Myeloid Leukemia and Myeloid Diseases. Clinical Lymphoma, Myeloma and Leukemia, 21, E415-E22. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Cortes, J.E., Heidel, F.H., Hellmann, A., et al. (2019) Randomized Comparison of Low Dose Cytarabine with or without Glasdegib in Patients with Newly Diagnosed Acute Myeloid Leukemia or High-Risk Myelodysplastic Syndrome. Leukemia, 33, 379-389. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Sekeres, M.A., Schuster, M., Joris, M., et al. (2022) A Phase 1b Study of Glasdegib Azacitidine in Patients with Untreated Acute Myeloid Leukemia and Higher-Risk Myelodysplastic Syndromes. Annals of Hematology, 101, 1689-1701. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Goldenson, B.H., Goodman, A.M. and Ball, E.D. (2021) Gemtuzumab Ozogamicin for the Treatment of Acute Myeloid Leukemia in Adults. Expert Opinion on Biological Therapy, 21, 849-862. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Lambert, J., Pautas, C., Terre, C., et al. (2019) Gemtuzumab Ozogamicin for De Novo Acute Myeloid Leukemia: Final Efficacy and Safety Updates from the Open-Label, Phase III ALFA-0701 Trial. Haematologica, 104, 113-119. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Fournier, E., Duployez, N., Ducourneau, B., et al. (2020) Mutational Profile and Benefit of Gemtuzumab Ozogamicin in Acute Myeloid Leukemia. Blood, 135, 542-546. [Google Scholar] [CrossRef] [PubMed]
|
|
[79]
|
Hills, R.K., Castaigne, S., Appelbaum, F.R, et al. (2014) Addition of Gemtuzumab Ozogamicin to Induction Chemotherapy in Adult Patients with Acute Myeloid Leukaemia: A Meta-Analysis of Individual Patient Data from Randomised Controlled Trials. The Lancet Oncology, 15, 986-996. [Google Scholar] [CrossRef]
|
|
[80]
|
Qu, T., Li, B. and Wang, Y. (2022) Targeting CD47/SIRPα as a Therapeutic Strategy, Where We Are and Where We Are Headed. Biomarker Research, 10, Article No. 20. [Google Scholar] [CrossRef] [PubMed]
|
|
[81]
|
Jaiswal, S., Jamieson, C.H., Pang, W.W., et al. (2009) CD47 Is Upregulated on Circulating Hematopoietic Stem Cells and Leukemia Cells to Avoid Phagocytosis. Cell, 138, 271-285. [Google Scholar] [CrossRef] [PubMed]
|
|
[82]
|
Daver, N. (2021) Immune Checkpoint Inhibitors in Acute Myeloid Leukemia. Best Practice & Research Clinical Haematology, 34, Article 101247. [Google Scholar] [CrossRef] [PubMed]
|
|
[83]
|
Sallman, D., Asch, A., Kambhampati, S., et al. (2021) The First-in-Class Anti-CD47 Antibody Magrolimab in Combination with Azacitidine Is Well Tolerated and Effective in AML Patients: Phase 1b Results. Clinical Lymphoma Myeloma & Leukemia, 21, S290. [Google Scholar] [CrossRef]
|
|
[84]
|
Cruz, N.M., Sugita, M., Ewing-Crystal, N., et al. (2018) Selection and Characterization of Antibody Clones Are Critical for Accurate Flow Cytometry-Based Monitoring of CD123 in Acute Myeloid Leukemia. Leukemia & Lymphoma, 59, 978-982. [Google Scholar] [CrossRef] [PubMed]
|
|
[85]
|
Lamble, A.J., Eidenschink Brodersen, L., Alonzo, T.A., et al. (2022) CD123 Expression Is Associated with High-Risk Disease Characteristics in Childhood Acute Myeloid Leukemia: A Report from the Children’s Oncology Group. Journal of Clinical Oncology, 40, 252-261. [Google Scholar] [CrossRef]
|
|
[86]
|
Xu, S., Zhang, M., Fang, X., et al. (2021) A Novel CD123-Targeted Therapeutic Peptide Loaded by Micellar Delivery System Combats Refractory Acute Myeloid Leukemia. Journal of Hematology & Oncology, 14, Article No. 193. [Google Scholar] [CrossRef] [PubMed]
|
|
[87]
|
Xu, S., Zhang, M., Fang, X., et al. (2022) CD123 Antagonistic Peptides Assembled with Nanomicelles Act as Monotherapeutics to Combat Refractory Acute Myeloid Leukemia. ACS Applied Materials & Interfaces, 14, 38584-38593. [Google Scholar] [CrossRef] [PubMed]
|
|
[88]
|
Tahk, S., Vick, B., Hiller, B., et al. (2021) SIRPα-αCD123 Fusion Antibodies Targeting CD123 in Conjunction with CD47 Blockade Enhance the Clearance of AML-Initiating Cells. Journal of Hematology & Oncology, 14, Article No. 155. [Google Scholar] [CrossRef] [PubMed]
|
|
[89]
|
Uy, G.L., Aldoss, I., Foster, M.C., et al. (2021) Flotetuzumab as Salvage Immunotherapy for Refractory Acute Myeloid Leukemia. Blood, 137, 751-762. [Google Scholar] [CrossRef] [PubMed]
|
|
[90]
|
Arcangeli, S., Rotiroti, M.C., Bardelli, M., et al. (2017) Balance of Anti-CD123 Chimeric Antigen Receptor Binding Affinity and Density for the Targeting of Acute Myeloid Leukemia. Molecular Therapy, 25, 1933-1945. [Google Scholar] [CrossRef] [PubMed]
|
|
[91]
|
Sugita, M., Galetto, R., Zong, H., et al. (2022) Allogeneic TCRαβ Deficient CAR T-Cells Targeting CD123 in Acute Myeloid Leukemia. Nature Communications, 3, Article No. 2227. [Google Scholar] [CrossRef] [PubMed]
|
|
[92]
|
El Khawanky, N., Hughes, A., Yu, W., et al. (2021) Demethylating Therapy Increases Anti-CD123 CAR T Cell Cytotoxicity against Acute Myeloid Leukemia. Nature Communications, 12, Article No. 6436. [Google Scholar] [CrossRef] [PubMed]
|
|
[93]
|
Li, K.X., Wu, H.Y., Pan, W.Y., et al. (2022) A Novel Approach for Relapsed/Refractory FLT3Mut Acute Myeloid Leukaemia: Synergistic Effect of the Combination of Bispecific FLT3scFv/NKG2D-CAR T Cells and Gilteritinib. Molecular Cancer, 21, Article No. 134. [Google Scholar] [CrossRef] [PubMed]
|
|
[94]
|
Greiner, J., Götz, M., Bunjes, D., et al. (2019) Immunological and Clinical Impact of Manipulated and Unmanipulated DLI after Allogeneic Stem Cell Transplantation of AML Patients. Journal of Clinical Medicine, 9, Article 39. [Google Scholar] [CrossRef] [PubMed]
|
|
[95]
|
Walter, R.B., Gyurkocza, B., Storer, B.E., et al. (2015) Comparison of Minimal Residual Disease as Outcome Predictor for AML Patients in First Complete Remission Undergoing Myeloablative or Nonmyeloablative Allogeneic Hematopoietic Cell Transplantation. Leukemia, 29, 137-144. [Google Scholar] [CrossRef] [PubMed]
|
|
[96]
|
Othus, M., Gale, R.P., Hourigan, C.S., et al. (2020) Statistics and Measurable Residual Disease (MRD) Testing: Uses and Abuses in Hematopoietic Cell Transplantation. Bone Marrow Transplantation, 55, 843-850. [Google Scholar] [CrossRef] [PubMed]
|
|
[97]
|
Hourigan, C.S., Dillon, L.W., Gui, G., et al. (2020) Impact of Conditioning Intensity of Allogeneic Transplantation for Acute Myeloid Leukemia with Genomic Evidence of Residual Disease. Journal of Clinical Oncology, 38, 1273-1283. [Google Scholar] [CrossRef]
|
|
[98]
|
Dillon, R., Hills, R., Freeman, S., et al. (2020) Molecular MRD Status and Outcome after Transplantation in NPM1-Mutated AML. Blood, 135, 680-688. [Google Scholar] [CrossRef] [PubMed]
|
|
[99]
|
Konuma, T., Kondo, T., Masuko, M., et al. (2021) Prognostic Value of Measurable Residual Disease at Allogeneic Transplantation for Adults with Core Binding Factor Acute Myeloid Leukemia in Complete Remission. Bone Marrow Transplantation, 56, 2779-2787. [Google Scholar] [CrossRef] [PubMed]
|
|
[100]
|
Jentzsch, M., Bischof, L., Backhaus, D., et al. (2022) Impact of MRD Status in Patients with AML Undergoing Allogeneic Stem Cell Transplantation in the First vs the Second Remission. Blood Advances, 6, 4570-4580. [Google Scholar] [CrossRef] [PubMed]
|
|
[101]
|
Schuurhuis, G.J., Heuser, M., Freeman, S., et al. (2018) Minimal/Measurable Residual Disease in AML: A Consensus Document from the European LeukemiaNet MRD Working Party. Blood, 131, 1275-1291. [Google Scholar] [CrossRef] [PubMed]
|
|
[102]
|
Grob, T., Sanders, M.A., Vonk, C.M., et al. (2023) Prognostic Value of FLT3-Internal Tandem Duplication Residual Disease in Acute Myeloid Leukemia. Journal of Clinical Oncology, 41, 756-765. [Google Scholar] [CrossRef]
|
|
[103]
|
Loo, S., Dillon, R., Ivey, A., et al. (2022) Pretransplant FLT3-ITD MRD Assessed by High-Sensitivity PCR-NGS Determines Posttransplant Clinical Outcome. Blood, 140, 2407-2411. [Google Scholar] [CrossRef] [PubMed]
|
|
[104]
|
Yu, S., Fan, Z., Ma, L., et al. (2021) Association between Measurable Residual Disease in Patients with Intermediate-Risk Acute Myeloid Leukemia and First Remission, Treatment, and Outcomes. JAMA Network Open, 4, e2115991. [Google Scholar] [CrossRef] [PubMed]
|
|
[105]
|
Freeman, S.D., Hills, R.K., Virgo, P., et al. (2018) Measurable Residual Disease at Induction Redefines Partial Response in Acute Myeloid Leukemia and Stratifies Outcomes in Patients at Standard Risk without NPM1 Mutations. Journal of Clinical Oncology, 36, 1486-1497. [Google Scholar] [CrossRef]
|
|
[106]
|
Short, N.J., Zhou, S., Fu, C., et al. (2020) Association of Measurable Residual Disease with Survival Outcomes in Patients with Acute Myeloid Leukemia: A Systematic Review and Meta-Analysis. JAMA Oncology, 6, 1890-1899. [Google Scholar] [CrossRef] [PubMed]
|
|
[107]
|
Pratz, K.W., Jonas, B.A., Pullarkat, V., et al. (2022) Measurable Residual Disease Response and Prognosis in Treatment-Naïve Acute Myeloid Leukemia with Venetoclax and Azacitidine. Journal of Clinical Oncology, 40, 855-865. [Google Scholar] [CrossRef]
|
|
[108]
|
Cherry, E.M., Abbott, D., Amaya, M., et al. (2021) Venetoclax and Azacitidine Compared with Induction Chemotherapy for Newly Diagnosed Patients with Acute Myeloid Leukemia. Blood Advances, 5, 5565-5573. [Google Scholar] [CrossRef] [PubMed]
|
|
[109]
|
Sahasrabudhe, K., Huang, Y., Rebechi, M, et al. (2022) Survival, Response Rates, and Post-Transplant Outcomes in Patients with Acute Myeloid Leukemia Aged 60-75 Treated with High Intensity Chemotherapy vs. Lower Intensity Targeted Therapy. Frontiers in Oncology, 12, Article 1017194. [Google Scholar] [CrossRef] [PubMed]
|
|
[110]
|
Wang, E.S., Altman, J.K., Pettit, K., et al. (2020) Preliminary Data on a Phase 1/2A First in Human Study of the Menin-KMT2A (MLL) Inhibitor KO-539 in Patients with Relapsed or Refractory Acute Myeloid Leukemia. Blood, 136, 7-8. [Google Scholar] [CrossRef]
|
|
[111]
|
Stein, E.M., Aldoss, I., Dipersio, J.F., et al. (2021) Safety and Efficacy of Menin Inhibition in Patients (Pts) with MLL-Rearranged and NPM1 Mutant Acute Leukemia: A Phase (Ph)1, First-in-Human Study of SNDX-5613 (AUGMENT 101). Blood, 138, 699. [Google Scholar] [CrossRef]
|