|
[1]
|
Zhou, X. and Wang, X. (2018) A Large-Scale Test Method for Mechanical Response of Pavement Structure. Advances in Materials Science and Engineering, 2018, Article ID: 2642409. [Google Scholar] [CrossRef]
|
|
[2]
|
Faluweki, M.K. and Goehring, L. (2022) Supplementary Material from “Structural Mechanics of Filamentous Cyanobacteria”. The Royal Society Collection.
|
|
[3]
|
Farajpour, A., Ghayesh, M.H. and Farokhi, H. (2018) A Review on the Mechanics of Nanostructures. International Journal of Engineering Science, 133, 231-263. [Google Scholar] [CrossRef]
|
|
[4]
|
Patekar, V. and Kale, K. (2022) State of the Art Review on Mechanical Properties of Sandwich Composite Structures. Polymer Composites, 43, 5820-5830. [Google Scholar] [CrossRef]
|
|
[5]
|
Weitao, L., Li, D. and Dong, L. (2020) Study on Mechanical Properties of a Hierarchical Octet-Truss Structure. Composite Structures, 249, Article ID: 112640. [Google Scholar] [CrossRef]
|
|
[6]
|
郭突玲, 沈慧君. 物理学史[M]. 北京: 清华大学出版社, 1993.
|
|
[7]
|
武际可. 力学史[M]. 重庆: 重庆出版社, 2000.
|
|
[8]
|
Reissner, E. (1950) On a Variational Theorem in Elasticity. Journal of Mathematical Physics, 29, 90-95. [Google Scholar] [CrossRef]
|
|
[9]
|
Hibbeler, R.C. (1997) Structural Analysis. 3rd Edition, Prentice-Hall, Inc., Upper Saddle River.
|
|
[10]
|
Samuelsson, A. and Zienkiewicz, O.C. (2006) History of the Stiffness Method. International Journal for Numerical Methods in Engineering, 67, 149-157. [Google Scholar] [CrossRef]
|
|
[11]
|
钱令希. 余能理论[J]. 中国科学, 1950, 1(2-4): 449-456.
|
|
[12]
|
胡海昌. 论弹性体力学和受范性体力学中的一般变分原理[J]. 物理学报, 1954, 10(3): 259-290.
|
|
[13]
|
冯康. 基于变分原理的差分格式[J]. 应用数学和计算数学, 1965, 2(4): 237-261.
|
|
[14]
|
Besseling, J.F. (1963) The Com, Petites Analogy between the Matrix Equations and Continuous Field Equations of Structural Analysis. International Symposium on Analogue and Digital Techniques Applied to Aeronautics, Liege, 223-242.
|
|
[15]
|
李正良. 结构力学的前世今生[J]. 大学科普, 2012, 6(3): 30-31.
|
|
[16]
|
杨迪雄. 结构力学发展的早期历史和启示[J]. 力学与实践, 2007, 29(6): 85-86.
|
|
[17]
|
Fantoli, A. (2011) Two New, Remarkable Galileo Biographies. History: Reviews of New Books, 39, 99-103. [Google Scholar] [CrossRef]
|
|
[18]
|
Aquilini, E., Cosentino, U., Pasqualetti, N. and Signori, F. (2021) Julius Robert Mayer and the Principle of Energy Conservation. ChemTexts, 7, Article No. 22. [Google Scholar] [CrossRef]
|
|
[19]
|
Cheng, C.-A. and Huang, H.-P. (2016) Learn the Lagrangian: A Vector-Valued RKHS Approach to Identifying Lagrangian Systems. IEEE Transactions on Cybernetics, 46, 3247-3258. [Google Scholar] [CrossRef]
|
|
[20]
|
Bravetti, A., Cruz, H. and Tapias, D. (2017) Contact Hamiltonian Mechanics. Annals of Physics, 376, 17-39. [Google Scholar] [CrossRef]
|
|
[21]
|
Chen, K.-D., Liu, J.-P., Chen, J.-Q., Zhong, X.-Y., Mikkola, A., Lu, Q.-H. and Ren, G.-X. (2019) Equivalence of Lagrange’s Equations for Non-Material Volume and the Principle of Virtual Work in ALE Formulation. Acta Mechanica, 231, 1141-1157. [Google Scholar] [CrossRef]
|
|
[22]
|
Collins, D., Hamati, R.J., Candelier, F., Gustavsson, K., Mehlig, B. and Voth, G.A. (2021) Lord Kelvin’s Isotropic Helicoid. Physical Review Fluids, 6, Article ID: 074302. [Google Scholar] [CrossRef]
|
|
[23]
|
Romero, I. (2017) A Generalization of Castigliano’s Theorems for Structures with Eigenstrains. Archive of Applied Mechanics, 87, 1727-1737. [Google Scholar] [CrossRef]
|
|
[24]
|
Timoshenko, S.P. and Young, D.H. (1965) Structural Theory. 2nd Edition, McGraw Inc., New York. (中译本: Timoshenko, S.P. and Young, D.H. 结构理论[M]. 第2版. 叶红玲, 杨庆生, 译. 北京: 机械工业出版社, 2005)
|
|
[25]
|
Argyris, J.H. 能量原理和结构分析[M]. 郁成勋, 译. 北京: 科学出版社, 1978.
|
|
[26]
|
Davydov, R. (2022) Nuclear and New Energy Technology. Energies, 15, Article No. 6046. [Google Scholar] [CrossRef]
|
|
[27]
|
Shepelin, N.A., Glushenkov, A.M., Lussini, V.C., et al. (2019) New Developments in Composites, Copolymer Technologies and Processing Techniques for Flexible Fluoropolymer Piezoelectric Generators for Efficient Energy Harvesting. Energy & Environmental Science, 12, 1143-1176. [Google Scholar] [CrossRef]
|
|
[28]
|
Röpke, M., Saura, P., Riepl, D., Pöverlein, M.C. and Kaila, V.R.I. (2020) Functional Water Wires Catalyze Long-Range Proton Pumping in the Mammalian Respiratory Complex I. Journal of the American Chemical Society, 142, 21758-21766. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Li, W., Chen, S. and Huang, H. (2023) System Reduction-Based Approximate Reanalysis Method for Statically Indeterminate Structures with High-Rank Modification. Structures, 55, 1423-1436. [Google Scholar] [CrossRef]
|
|
[30]
|
Yao, W. and Ye, Z.D. (2004) Internal Force Analysis Due to the Supporting Translation in Statically Indeterminate Structures for Different Elastic Modulus. Journal of Shanghai University (English Edition), 8, 274-280. [Google Scholar] [CrossRef]
|
|
[31]
|
Rosales, C. and Lim, K.M. (2005) Numerical Comparison between Maxwell Stress Method and Equivalent Multipole Approach for Calculation of the Dielectrophoretic Force in Single-Cell Traps. Electrophoresis, 26, 2057-2065. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Charlton, T.M. (1980) The Principle of Virtual Work in Relation to Müller-Breslau’s Principle. International Journal of Mechanical Sciences, 22, 523-525. [Google Scholar] [CrossRef]
|
|
[33]
|
Shen, W. (1992) The Generalized Müller-Breslau Principle for Higher-Order Elements. Computers & Structures, 44, 207-212. [Google Scholar] [CrossRef]
|
|
[34]
|
Müller, P.C., Pfeiffer, F. and Schiehlen, W. (2012) Kurt Magnus: Commemorating His 100th Birthday. Archive of Applied Mechanics, 82, 1705-1708. [Google Scholar] [CrossRef]
|
|
[35]
|
Huedo, J.I.D., Martínez, J.M. and Montero, P.G. (2005) Dimensioning of Longitudinal Reinforcements in Concrete Beams with a Non-Rectangular Section and Variable Height. Spanish Journal of Agricultural Research, 3, 367-376. [Google Scholar] [CrossRef]
|
|
[36]
|
Miller, P.R. and Sarin, R.K. (1971) Modification Techniques in the Matrix Force Method. The Aeronautical Journal, 75, 126-128. [Google Scholar] [CrossRef]
|
|
[37]
|
Boucard, J. (2013) Cyclotomie et formes quadratiques dans l’œuvre arithmétique d’Augustin-Louis Cauchy (1829-1840). Archive for History of Exact Sciences, 67, 349-414. [Google Scholar] [CrossRef]
|
|
[38]
|
Shampo, M.A. and Kyle, R.A. (1982) Leonhard Euler. JAMA, 248, 1072-1072. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Koohestani, K. (2018) Structural Reanalysis via Force Method. International Journal of Solids and Structures, 136-137, 103-111. [Google Scholar] [CrossRef]
|
|
[40]
|
Rezaiee-Pajand, M. and Gharaei-Moghaddam, N. (2017) Frame Nonlinear Analysis by Force Method. International Journal of Steel Structures, 17, 609-629. [Google Scholar] [CrossRef]
|
|
[41]
|
Long, H., Liu, Y., Huang, C., Wu, W. and Li, Z. (2019) Modelling a Cracked Beam Structure Using the Finite Element Displacement Method. Shock and Vibration, 2019, Article ID: 7302057. [Google Scholar] [CrossRef]
|
|
[42]
|
Zhou, W., Zhao, Y., Yuan, H. and Wang, X. (2023) Study of the Hull Structural Deformation Calculation Using the Matrix Displacement Method and Its Influence on the Shaft Alignment. Journal of Marine Science and Engineering, 11, Article No. 1495. [Google Scholar] [CrossRef]
|
|
[43]
|
Mavriplis, C. (1994) Adaptive Mesh Strategies for the Spectral Element Method. Computer Methods in Applied Mechanics and Engineering, 116, 77-86. [Google Scholar] [CrossRef]
|
|
[44]
|
Hafeez, M.B. and Krawczuk, M. (2023) A Review: Applications of the Spectral Finite Element Method. Archives of Computational Methods in Engineering, 30, 3453-3465. [Google Scholar] [CrossRef]
|
|
[45]
|
Clough, R.W. (2001) Thoughts about the Origin of the Finite Element Method. Computers and Structures, 79, 2029-2030. [Google Scholar] [CrossRef]
|
|
[46]
|
Cough, R.W. (2004) Early History of the Finite Element Method from the Viewpoint of a Pioneer. International Journal for Numerical Methods in Engineering, 60, 283-287. [Google Scholar] [CrossRef]
|
|
[47]
|
Clough, R.W. (1960) The Finite Element Method in Plane Stress Analysis. Proceedings of 2nd ASCE Conference of Electron Computation, Pittsburg, 8-9 September 1960, 8.
|
|
[48]
|
Jones, R.E. (1964) A Generalization of the Direct Stiffness Method of Structural Analysis. AIAA Journal, 2, 821-826. [Google Scholar] [CrossRef]
|
|
[49]
|
Wilson, E.L. (1993) Automation of the Finite Element Method—A Personal Historical View. Finite Elements in Analysis and Design, 13, 91-104. [Google Scholar] [CrossRef]
|
|
[50]
|
Melosh, R.J. (1963) Basis for the Derivation of Matrices for the Direct Stiffness Method. AIAA Journal, 1, 1631-1637. [Google Scholar] [CrossRef]
|
|
[51]
|
Li, J., Shang, D., Liu, J., et al. (2019) Sound Scattering from Targets in Shallow Water by Finite Element Method Combined with Normal-Mode Method. The Journal of the Acoustical Society of America, 145, 1692-1692. [Google Scholar] [CrossRef]
|
|
[52]
|
Okubo, K., Rougier, E., Lei, Z., et al. (2020) Modeling Earthquakes with Off-Fault Damage Using the Combined Finite-Discrete Element Method. Computational Particle Mechanics, 7, 1057-1072. [Google Scholar] [CrossRef]
|
|
[53]
|
Goel, V.K. and Nyman, E. (2016) Computational Modeling and Finite Element Analysis. Spine, 41, S6-S7. [Google Scholar] [CrossRef]
|
|
[54]
|
Dodig, H., Poljak, D. and Cvetković, M. (2021) On the Edge Element Boundary Element Method/Finite Element Method Coupling for Time Harmonic Electromagnetic Scattering Problems. International Journal for Numerical Methods in Engineering, 122, 3613-3652. [Google Scholar] [CrossRef]
|
|
[55]
|
Khaniki, H.B. and Ghayesh, M.H. (2020) A Review on the Mechanics of Carbon Nanotube Strengthened Deformable Structures. Engineering Structures, 220, Article ID: 110711. [Google Scholar] [CrossRef]
|
|
[56]
|
Chandra, P. and Das, R. (2023) Finite-Element-Based Machine-Learning Algorithm for Studying Gyrotactic-Nanofluid Flow via Stretching Surface. International Journal for Numerical Methods in Fluids, 95, 1888-1912. [Google Scholar] [CrossRef]
|
|
[57]
|
Muhammad, N., Zaman, F.D. and Mustafa, M.T. (2022) OpenFOAM for Computational Combustion Dynamics. The European Physical Journal Special Topics, 231, 2821-2835. [Google Scholar] [CrossRef]
|
|
[58]
|
Park, Y.-S., Kim, S., Kim, N. and Lee, J.-J. (2018) Evaluation of Bridge Support Condition Using Bridge Responses. Structural Health Monitoring, 18, 767-777. [Google Scholar] [CrossRef]
|
|
[59]
|
Quan, Y., Chen, J. and Gu, M. (2020) Aerodynamic Interference Effects of a Proposed Taller High-Rise Building on Wind Pressures on Existing Tall Buildings. The Structural Design of Tall and Special Buildings, 29, E1703. [Google Scholar] [CrossRef]
|
|
[60]
|
Fang, Q., Wang, G., Du, J., et al. (2023) Prediction of Tunnelling Induced Ground Movement in Clay Using Principle of Minimum Total Potential Energy. Tunnelling and Underground Space Technology, 131, Article ID: 104854. [Google Scholar] [CrossRef]
|
|
[61]
|
Faluweki, M.K. and Goehring, L. (2022) Structural Mechanics of Filamentous Cyanobacteria. Journal of the Royal Society Interface, 19, Article ID: 20220268. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
潘毅, 包韵雷, 刘永鑫, 等. 基于中国规范的近断层区竖向抗震设计谱研究[J]. 工程力学, 2021, 38(12): 183-190.
|
|
[63]
|
毛帮笑, 夏细胜, 王大奎, 等. 烧结温度对SiO_(2f)/SiO_2陶瓷基复合材料的微观结构和力学性能的影响[J/OL]. 陶瓷学报, 2024(1): 125-132. [Google Scholar] [CrossRef]
|
|
[64]
|
Gao, W. (2018) Integrated Intelligent Method for Displacement Prediction in Underground Engineering. Neural Processing Letters, 47, 1055-1075. [Google Scholar] [CrossRef]
|
|
[65]
|
Yang, C., Wang, C. and Cheng, Z. (2022) Editorial for the Special Issue “Nanoscale Ferroic Materials—Ferroelectric, Piezoelectric, Magnetic, and Multiferroic Materials”. Nanomaterials, 12, Article No. 2951. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Lu, W., Thouless, M.D., Hu, Z., Wang, H., Ghelichi, R., Wu, C.-H. and Parks, D. (2016) CASL Structural Mechanics Modeling of Grid-To-Rod Fretting (GTRF). JOM, 68, 2922-2929. [Google Scholar] [CrossRef]
|