一类加速ADMM算法在投资组合选择中的应用研究
Research on the Application of a Class of Accelerated ADMM Algorithms in Portfolio Selection
DOI: 10.12677/AAM.2024.133108, PDF,   
作者: 胡 同:河北工业大学理学院,天津
关键词: 加速ADMM非遍历收敛速率M-V模型Accelerated ADMM Non-Ergodic Convergence Rate M-V Model
摘要: Mean-Variance模型为现代投资组合选取奠定了基础。 近年来,随着金融资产数量的提高,求 解M-V模型的经典算法效率逐渐变低。 因此,有关学者提出了资产分割的ADMM算法(AS- ADMM)以提升ADMM 算法的效率。 该算法能够比经典的算法更高效,但在一些超高维的情况 下,AS-ADMM也不足以显著提高求解效率。 为了解决这个问题,本文应用外推思想,提出了部 分加速的资产分割算法(PA-AS-ADMM),并证明了该算法的非遍历收敛速率为O( ),最后在数值实验中验证了PA-AS-ADMM的有效性。
Abstract: The Mean-Variance model laid the foundation for modern portfolio selection. In re- cent years, as the number of financial assets has increased, the efficiency of classic algorithms for solving the M-V model has gradually decreased. Therefore, scholars have proposed Asset-Splitting ADMM algorithm (AS-ADMM) to improve the efficien- cy of ADMM algorithm. This algorithm can be more efficient than the classic ones, but in high-dimensional cases, AS-ADMM is not sufficiently effective. To address this problem, this paper applies the extrapolation idea and proposes Partially Accelerated Asset Segmentation algorithm (PA-AS-ADMM), and proves that the non-ergodic con- vergence rate of this algorithm is O(). Finally, the effectiveness of PA-AS-ADMM is verified in numerical experiments.
文章引用:胡同. 一类加速ADMM算法在投资组合选择中的应用研究[J]. 应用数学进展, 2024, 13(3): 1176-1186. https://doi.org/10.12677/AAM.2024.133108

参考文献

[1] Markowitz, H.M. (1952) Portfolio Selection. The Journal of Finance, 7, 77-91.
https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
[2] Bai, Z., Liu, H. and Wong, W.K. (2009) Enhancement of the Applicability of Markowitz’s Portfolio Optimization by Utilizing Random Matrix Theory. Mathematical Finance, 19, 639- 667.
https://doi.org/10.1111/j.1467-9965.2009.00383.x
[3] Fan, J., Liao, Y. and Shi, X. (2015) Risks of Large Portfolios. Journal of Econometrics, 186, 367-387.
https://doi.org/10.1016/j.jeconom.2015.02.015
[4] Lorenzo, D., Liuzzi, G., Rinaldi, F., Schoen, F. and Sciandrone, M. (2012) A Concave Optimization-Based Approach for Sparse Portfolio Selection. Optimization Method and Soft- ware, 27, 983-10000.
https://doi.org/10.1080/10556788.2011.577773
[5] DeMiguel. V., Garlappi. L., Nogales. J. and Uppal. R. (2009) A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms. Manage- ment Science, 55, 798-812.
https://doi.org/10.1287/mnsc.1080.0986
[6] Brodie, J., Daubechies, I., DeMol, C., Giannone, D. and Loris, D. (2008) Sparse and Stable Markowitz Portfolios. ECB Working Paper Series.
[7] Still, S. and Kondor, I. (2010) Regularizing Portfolio Optimization. New Journal of Physics, 12, Article 075034.
https://doi.org/10.1088/1367-2630/12/7/075034
[8] Brandt, M.W., Pedro, S.C. and Rossen, V. (2009) Parametric Portfolio Policies: Exploiting Characteristics in the Cross Section of Equity Returns. Review of Financial Studies, 22, 3411- 3447.
https://doi.org/10.1093/rfs/hhp003
[9] At-Sahalia, Y., Mykland, P.A. and Zhang, L. (2011) Ultra High Frequency Volatility Estima- tion with Dependent Microstructure Noise. Journal of Econometrics, 160, 160-175.
https://doi.org/10.1016/j.jeconom.2010.03.028
[10] Frahm, G., et al. (2010) Dominating Estimators for Minimum-Variance Portfolios. Journal of Econometrics, 159, 289-302.
https://doi.org/10.1016/j.jeconom.2010.07.007
[11] Engle, R.F., Ledoit, O., et al. (2019) Large Dynamic Covariance Matrices. Journal of Business & Economic Statistics, 37, 363-375.
https://doi.org/10.1080/07350015.2017.1345683
[12] Boudt, K., et al. (2017) Positive Semidefinite Integrated Covariance Estimation, Factorizations and Asynchronicity. Journal of Econometrics, 196, 347-367.
https://doi.org/10.1016/j.jeconom.2016.09.016
[13] Cai, T.T., et al. (2020) High-Dimensional Minimum Variance Portfolio Estimation Based on High-Frequency Data. Journal of Econometrics, 214, 482-494.
https://doi.org/10.1016/j.jeconom.2019.04.039
[14] Ding, Y., et al. (2021) High Dimensional Minimum Variance Portfolio Estimation under Sta- tistical Factor Models. Journal of Econometrics, 222, 502-515.
https://doi.org/10.1016/j.jeconom.2020.07.013
[15] So, M.K.P., Chan, T.W.C. and Chu, A.M.Y. (2022) Efficient Estimation of High-Dimensional Dynamic Covariance by Risk Factor Mapping: Applications for Financial Risk Management. Journal of Econometrics, 227, 151-167.
https://doi.org/10.1016/j.jeconom.2020.04.040
[16] Cai, T. and Liu, W. (2011) A Direct Estimation Approach To Sparse Linear Discriminant Analysis. Journal of the American Statistical Association, 106, 1566-1577.
https://doi.org/10.1198/jasa.2011.tm11199
[17] Pun, C. and Wong, H. (2019) A Linear Programming Model for Selection of Sparse High- Dimensional Multiperiod Portfolios. European Journal of Operational Research, 273, 754-771.
https://doi.org/10.1016/j.ejor.2018.08.025
[18] Cai, Z., et al. (2024) Asset Splitting Algorithm for Ultrahigh Dimensional Portfolio Selection and Its Theoretical Property. Journal of Econometrics, 239, Article 105291.
https://doi.org/10.1016/j.jeconom.2022.04.004
[19] Li, H. and Lin, Z. (2019) Accelerated Alternating Direction Method of Multipliers: An Optimal O (1/K) Nonergodic Analysis. Journal of Scientific Computing, 79, 671-699.
https://doi.org/10.1007/s10915-018-0893-5
[20] Sun, D., Toh, D.C. and Yang, L. (2015) A Convergent 3-Block Semiproximal Alternating Di- rection Method of Multipliers for Conic Programming with 4-Type Constraints. SIAM Journal on Optimization, 25, 882-915.
https://doi.org/10.1137/140964357
[21] Boyd, S., Parikh, N. and Chu, E. (2011) Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Foundations and Trends in Machine Learning, 3, 1-122.
https://doi.org/10.1561/2200000016