|
[1]
|
Shah, A., Torres, P., Tscharner, R., Wyrsch, N. and Keppner, H. (1999) Photovoltaic Technology: The Case for Thin-Film Solar Cells. Science, 285, 692-698. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Xie, L., et al. (2023) Theoretical Research and Simulation of GaAs Nanowire Arrays in Reflection-Type Photon-Enhanced Thermionic Emission Solar Converters. Solar Energy, 251, 295-305. [Google Scholar] [CrossRef]
|
|
[3]
|
Shockley, W. and Queisser, H.J. (1961) Detailed Balance Limit of Efficiency of P-N Junction Solar Cells. Journal of Applied Physics, 32, 510-519. [Google Scholar] [CrossRef]
|
|
[4]
|
Yang, N., Xie, L., Wang, P., Xu, Y., Li, S., Shen, X., Fu, Y. and He, H. (2022) Theoretical Analysis and Experimental Research of Photon-Enhanced Thermionic Emission Solar Energy Converters with InN Photocathode. Solar Energy Materials and Solar Cells, 242, Article ID: 111766. [Google Scholar] [CrossRef]
|
|
[5]
|
Luque, A. and Martı́, A. (1999) Limiting Efficiency of Coupled Thermal and Photovoltaic Converters. Solar Energy Materials and Solar Cells, 58, 147-165. [Google Scholar] [CrossRef]
|
|
[6]
|
Meneses-Rodrı́guez, D., Horley, P.P., González-Hernández, J., Vorobiev, Y.V. and Gorley, P.N. (2005) Photovoltaic Solar Cells Performance at Elevated Temperatures. Solar Energy, 78, 243-251. [Google Scholar] [CrossRef]
|
|
[7]
|
Schwede, J.W., Bargatin, I., Riley, D.C., Hardin, B.E., Rosenthal, S.J., Sun, Y., Schmitt, F., Pianetta, P., Howe, R.T., Shen, Z.-X. and Melosh, N.A. (2010) Photon-Enhanced Thermionic Emission for Solar Concentrator Systems. Nature Materials, 9, 762-767. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Qiu, H., et al. (2023) Hybrid Photon-Enhanced Thermionic Emission and Photovoltaic Converter with Concentrated Solar Power. Solar Energy Materials and Solar Cells, 254, Article ID: 112279. [Google Scholar] [CrossRef]
|
|
[9]
|
Schwede, J.W., Sarmiento, T., Narasimhan, V.K., Rosenthal, S.J., Riley, D.C., Schmitt, F., Bargatin, I., Sahasrabuddhe, K., Howe, R.T., Harris, J.S., Melosh, N.A. and Shen, Z.X. (2013) Photon-Enhanced Thermionic Emission from Heterostructures with Low Interface Recombination. Nature Communications, 4, Article No. 1576. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Tang, W., Yang, W., Yang, Y., Sun, C. and Cai, Z. (2014) GaAs Film for Photon-Enhanced Thermionic Emission Solar Harvesters. Materials Science in Semiconductor Processing, 25, Article ID: 143147. [Google Scholar] [CrossRef]
|
|
[11]
|
Diao, Y., Liu, L. and Xia, S. (2019) Photon-Enhanced Thermionic Emission Solar Energy Converters with GaAs Wire Array Cathode under External Electric Field. Applied Nanoscience, 10, 807-817. [Google Scholar] [CrossRef]
|
|
[12]
|
Yang, Y., Yang, W. and Sun, C. (2015) Heterostructured Cathode with Graded Bandgap Window-Layer for Photon-Enhanced Thermionic Emission Solar Energy Converters. Solar Energy Materials and Solar Cells, 132, 410-417. [Google Scholar] [CrossRef]
|
|
[13]
|
Wang, K., Fu, R., Wang, G., Tran, H., Chang, B. and Yang, L. (2017) High-Performance Photon-Enhanced Thermionic Emission Solar Energy Converters with AlXGa1−XAs/GaAs Cathode under Multilevel Built-In Electric Field. Optics Communications, 402, 85-90. [Google Scholar] [CrossRef]
|
|
[14]
|
Wang, P., et al. (2023) Theoretical Analysis of InGaN Solar Energy Converters Based on Photon-Enhanced Thermionic Emission. Energies, 16, Article 3483. [Google Scholar] [CrossRef]
|
|
[15]
|
Yin, M., Jiang, H., Shi, L., Zhang, D., He, Z., Luo, Y. and Pan, B. (2023) Air-Enclosed Pores in Graphene Aerogel Inhibit the Adsorption of Bisphenol A but Accelerate the Adsorption of Naphthalene. Ecotoxicology and Environmental Safety, 259, Article ID: 114989. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Lisiane, S.S., Pascal, S.T., Diana, R.L., Cezar, A.D., Marcos, A.Z.V., Luis, E.G.A., Eder, C.L., Edilson, V.B. and Eliana, W.D.M. (2023) 3D Graphene Sponge Biomass-Derived with High Surface Area Applied as Adsorbent for Nitrophenols. Journal of Environmental Chemical Engineering, 11, Article ID: 109924. [Google Scholar] [CrossRef]
|
|
[17]
|
Yang, G.C., et al. (2023) Ultralight, Superelastic Pure Graphene Aerogel for Piezoresistive Sensing Application. Journal of Materials Science, 58, 850-863. [Google Scholar] [CrossRef]
|
|
[18]
|
Mahamad Yusoff, N.F., Idris, N.H., Md Din, M.F., Majid, S.R., Harun, N.A. and Noerochim, L. (2023) Coupling of Mn2O3 with Heteroatom-Doped Reduced Graphene Oxide Aerogels with Improved Electrochemical Performances for Sodium-Ion Batteries. Nanomaterials, 13, Article 732. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Cao, X.L., et al. (2023) BC/GO-Ag Composite Aerogel with Synergistic Enhanced Photothermal Performance for Efficient Solar Water Evaporation. Solar Energy, 255, 26-35. [Google Scholar] [CrossRef]
|
|
[20]
|
Lu, K.-Q., Yuan, L., Xin, X. and Xu, Y.-J. (2017) Hybridization of Graphene Oxide with Commercial Graphene for Constructing 3D Metal-Free Aerogel with Enhanced Photocatalysis. Applied Catalysis B: Environmental, 226, 16-22. [Google Scholar] [CrossRef]
|
|
[21]
|
Fei, Y., Tong, T., Bao, J. and Hu, Y.H. (2022) New Chemistry for One-Step Synthesis of Tunable 3D Hydrogenated Graphene. Journal of Physics and Chemistry of Solids, 167, Article ID: 110772. [Google Scholar] [CrossRef]
|
|
[22]
|
Li, D. and Yang, P. (2023) B, N, and Si Single-Doping at Graphene/Cu(111) Interfaces to Adjust Electrical Properties. Langmuir, 39, 9172-9179. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Maryam, M., Mohammad Sadeq Akhoundi, K. and Aliasghar, S. (2023) Band Gap Tuning of AGNRs within the Atmospheric IR Windows. Journal of Electronic Materials, 52, 5345-5351. [Google Scholar] [CrossRef]
|
|
[24]
|
Marc, G.C., Daniele, P., Sena, T., Joel, D., Felix, H., Matthias, M., Francesco, A., Cristiana Di, V. and Willi, A. (2022) Spatial Segregation of Substitutional B Atoms in Graphene Patterned by the Moiré Superlattice on Ir(111). Carbon, 201, 881-890. [Google Scholar] [CrossRef]
|
|
[25]
|
Amanpreet, K., Pandey, O.P. and Loveleen, K.B. (2023) Synergic Effect of B and N Dopants in Graphene for Supercapacitance and Electrochemical Sensing Applications. Journal of Physics and Chemistry of Solids, 180, Article ID: 111460. [Google Scholar] [CrossRef]
|
|
[26]
|
Chowdhury, S. and Balasubramanian, R. (2015) Highly Efficient, Rapid and Selective CO2 Capture by Thermally Treated Graphene Nanosheets. Journal of CO2 Utilization, 13, 50-60. [Google Scholar] [CrossRef]
|
|
[27]
|
Xu, Y., et al. (2023) Photon-Enhanced Thermionic Emission Solar Cells Based on Three Dimensional Graphene Aerogel Cathode Materials. Journal of Materials Science: Materials in Electronics, 34, Article No. 1122. [Google Scholar] [CrossRef]
|
|
[28]
|
De, D., Chakraborty, M., Majumdar, S. and Giri, S. (2014) Bandgap Engineering through Nanocrystalline Magnetic Alloy Grafting on Reduced Graphene Oxide. Physical Chemistry Chemical Physics, 16, 19661-19667. [Google Scholar] [CrossRef]
|
|
[29]
|
Chowdhury, S., Jiang, Y., Muthukaruppan, S. and Balasubramanian, R. (2018) Effect of Boron Doping Level on the Photocatalytic Activity of Graphene Aerogels. Carbon, 128, 237-248. [Google Scholar] [CrossRef]
|
|
[30]
|
Gurunathan, S., Han, J.W., Park, J.H., Kim, E., Choi, Y.-J., Kwon, D.-N. and Kim, J.-H. (2015) Reduced Graphene Oxide-Silver Nanoparticle Nanocomposite: A Potential Anticancer Nanotherapy. International Journal of Nanomedicine, 19, 6257-6276. [Google Scholar] [CrossRef]
|
|
[31]
|
Yu, X., Han, P., Wei, Z., Huang, L., Gu, Z., Peng, S., Ma, J. and Zheng, G. (2018) Boron-Doped Graphene for Electrocatalytic N2 Reduction. Joule, 2, 1610-1622. [Google Scholar] [CrossRef]
|
|
[32]
|
Mattias Klaus, J., Friedemann, D.H., Gianluca, C., Fiacre, E.R., Chang, S., Michelle, V.C., Tim, N., Jacob, K. and Martin, C.S. (2023) On the Conversion between Recombination Rates and Electronic Defect Parameters in Semiconductors. IEEE Journal of Photovoltaics, 13, 524-534. [Google Scholar] [CrossRef]
|