|
[1]
|
Magierski, R. and Sobow, T. (2016) Serotonergic Drugs for the Treatment of Neuropsychiatric Symptoms in Dementia. Expert Review of Neurotherapeutics, 16, 375-387. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
International, A.S.D. (2021) World Alzheimer Report 2021. Alzheimer’s Disease International.
|
|
[3]
|
World Health Organization (2023) Dementia.
|
|
[4]
|
Soria, L.J., González, H.M. and Léger, G.C. (2019) Alzheimer’s Disease. Handbook of Clinical Neurology, 167, 231-255. [Google Scholar] [CrossRef]
|
|
[5]
|
Yang, C., Yang, Q., Xiang, Y., et al. (2023) The Neuroprotective Effects of Oxygen Therapy in Alzheimer’s Disease: A Narrative Review. Neural Regeneration Research, 18, 57-63. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Kverno, K. (2022) New Treatment Aimed at Preventing Alzheimer’s Dementia. Journal of Psychosocial Nursing and Mental Health Services, 60, 11-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Cummings, J., Lee, G., Nahed, P., et al. (2022) Alzheimer’s Disease Drug Development Pipeline: 2022. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 8, e12295. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Nielsen, R.E., Grøntved, S., Lolk, A., et al. (2022) Real-World Effects of Anti-Dementia Treatment on Mortality in Patients with Alzheimer’s Dementia. Medicine, 101, e31625. [Google Scholar] [CrossRef]
|
|
[9]
|
Garcia, M.J., Leadley, R., Lang, S., et al. (2023) Real-World Use of Symptomatic Treatments in Early Alzheimer’s Disease. Journal of Alzheimer’s Disease, 91, 151-167. [Google Scholar] [CrossRef]
|
|
[10]
|
Baker, J.E., Lim, Y.Y., Pietrzak, R.H., et al. (2017) Cognitive Impairment and Decline in Cognitively Normal Older Adults with High Amyloid-β: A Meta-Analysis. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 6, 108-121. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Huang, Y.R. and Liu, R.T. (2020) The Toxicity and Polymorphism of β-Amyloid Oligomers. International Journal of Molecular Sciences, 21, Article 4477. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Tiwari, S., Atluri, V., Kaushik, A., et al. (2019) Alzheimer’s Disease: Pathogenesis, Diagnostics, and Therapeutics. International Journal of Nanomedicine, 14, 5541-5554. [Google Scholar] [CrossRef]
|
|
[13]
|
Agis-Torres, A., Solhuber, M., Fernandez, M., et al. (2014) Multi-Target-Directed Ligands and Other Therapeutic Strategies in the Search of a Real Solution for Alzheimer’s Disease. Current Neuropharmacology, 12, 2-36. [Google Scholar] [CrossRef]
|
|
[14]
|
Johnson, K.A., Schultz, A., Betensky, R.A., et al. (2016) Tau Positron Emission Tomographic Imaging in Aging and Early Alzheimer Disease. Annals of Neurology, 79, 110-119. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Hamano, T., Enomoto, S., Shirafuji, N., et al. (2021) Autophagy and Tau Protein. International Journal of Molecular Sciences, 22, Article 7475. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Zhang, H., Wei, W., Zhao, M., et al. (2021) Interaction between Aβ and Tau in the Pathogenesis of Alzheimer’s Disease. International Journal of Biological Sciences, 17, 2181-2192. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Shi, Y., Manis, M., Long, J., et al. (2019) Microglia Drive APOE-Dependent Neurodegeneration in a Tauopathy Mouse Model. Journal of Experimental Medicine, 216, 2546-2561. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Tapia-Rojas, C., Cabezas-Opazo, F., Deaton, C.A., et al. (2019) It’s All about Tau. Progress in Neurobiology, 175, 54-76. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Contestabile, A. (2011) The History of the Cholinergic Hypothesis. Behavioural Brain Research, 221, 334-340. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Li, Y., Fan, H., Sun, J., et al. (2020) Circular RNA Expression Profile of Alzheimer’s Disease and Its Clinical Significance as Biomarkers for the Disease Risk and Progression. The International Journal of Biochemistry & Cell Biology, 123, Article ID: 105747. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Bekdash, R.A. (2021) The Cholinergic System, the Adrenergic System and the Neuropathology of Alzheimer’s Disease. International Journal of Molecular Sciences, 22, Article 1273. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Feng, W., Destain, H., Smith, J.J., et al. (2022) Maintenance of Neurotransmitter Identity by Hox Proteins through a Homeostatic Mechanism. Nature Communications, 13, Article No. 6097. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Rand, J.B. (2007) Acetylcholine. WormBook. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Sharma, P., Srivastava, P., Seth, A., et al. (2019) Comprehensive Review of Mechanisms of Pathogenesis Involved in Alzheimer’s Disease and Potential Therapeutic Strategies. Progress in Neurobiology, 174, 53-89. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Hampel, H., Mesulam, M.M., Cuello, A.C., et al. (2018) The Cholinergic System in the Pathophysiology and Treatment of Alzheimer’s Disease. Brain, 141, 1917-1933. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Collingridge, G.L., Olsen, R.W., Peters, J., et al. (2009) A Nomenclature for Ligand-Gated Ion Channels. Neuropharmacology, 56, 2-5. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Jalali-Yazdi, F., Chowdhury, S., Yoshioka, C., et al. (2018) Mechanisms for Zinc and Proton Inhibition of the GluN1/GluN2A NMDA Receptor. Cell, 175, 1520-1532.E15. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Sanabria-Castro, A., Alvarado-Echeverria, I. and Monge-Bonilla, C. (2017) Molecular Pathogenesis of Alzheimer’s Disease: An Update. Annals of Neurosciences, 24, 46-54. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Campos, C., Rocha, N.B., Vieira, R.T., et al. (2016) Treatment of Cognitive Deficits in Alzheimer’s Disease: A Psychopharmacological Review. Psychiatria Danubina, 28, 2-12.
|
|
[30]
|
Zhu, C.C., Fu, S.Y., Chen, Y.X., et al. (2020) Advances in Drug Therapy for Alzheimer’s Disease. Current Medical Science, 40, 999-1008. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Yao, W., Yang, H. and Yang, J. (2022) Small-Molecule Drugs Development for Alzheimer’s Disease. Frontiers in Aging Neuroscience, 14, Article 1019412. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Abou, B.D. (2022) An Ethnopharmacological Review on the Therapeutical Properties of Flavonoids and Their Mechanisms of Actions: A Comprehensive Review Based on up to Date Knowledge. Toxicology Reports, 9, 445-469. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
高迪, 张海英. 阿尔茨海默病治疗药物——aducanumab[J]. 临床药物治疗杂志, 2022, 20(12): 51-55.
|
|
[34]
|
De La Torre, B.G. and Albericio, F. (2022) The Pharmaceutical Industry in 2021. An Analysis of FDA Drug Approvals from the Perspective of Molecules. Molecules, 27, Article 1075. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Ferrero, J., Williams, L., Stella, H., et al. (2016) First-In-Human, Double-Blind, Placebo-Controlled, Single-Dose Escalation Study of Aducanumab (BIIB037) in Mild-to-Moderate Alzheimer’s Disease. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 2, 169-176. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Sevigny, J., Chiao, P., Bussière, T., et al. (2016) The Antibody Aducanumab Reduces Aβ Plaques in Alzheimer’s Disease. Nature, 537, 50-56. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Lin, L., Hua, F., Salinas, C., et al. (2022) Quantitative Systems Pharmacology Model for Alzheimer’s Disease to Predict the Effect of Aducanumab on Brain Amyloid. CPT: Pharmacometrics & Systems Pharmacology, 11, 362-372. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Herring, W.L., Gould, I.G., Fillit, H., et al. (2021) Predicted Lifetime Health Outcomes for Aducanumab in Patients with Early Alzheimer’s Disease. Neurology and Therapy, 10, 919-940. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Shi, M., Chu, F., Zhu, F., et al. (2022) Impact of Anti-Amyloid-β Monoclonal Antibodies on the Pathology and Clinical Profile of Alzheimer’s Disease: A Focus on Aducanumab and Lecanemab. Frontiers in Aging Neuroscience, 14, Article 870517. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Karimi, N., Bayram, Ç.F., Arslan, E., et al. (2022) Tau Immunotherapy in Alzheimer’s Disease and Progressive Supranuclear Palsy. International Immunopharmacology, 113, Article ID: 109445. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Imbimbo, B.P., Ippati, S., Watling, M., et al. (2022) A Critical Appraisal of Tau-Targeting Therapies for Primary and Secondary Tauopathies. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 18, 1008-1037. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Martinez, A., Alonso, M., Castro, A., et al. (2002) First Non-ATP Competitive Glycogen Synthase Kinase 3 β (GSK-3β) Inhibitors: Thiadiazolidinones (TDZD) as Potential Drugs for the Treatment of Alzheimer’s Disease. Journal of Medicinal Chemistry, 45, 1292-1299. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Serenó, L., Coma, M., Rodríguez, M., et al. (2009) A Novel GSK-3β Inhibitor Reduces Alzheimer’s Pathology and Rescues Neuronal Loss in Vivo. Neurobiology of Disease, 35, 359-367. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Hu, J.P., Xie, J.W., Wang, C.Y., et al. (2011) Valproate Reduces Tau Phosphorylation via Cyclin-Dependent Kinase 5 and Glycogen Synthase Kinase 3 Signaling Pathways. Brain Research Bulletin, 85, 194-200. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Qiang, L., Sun, X., Austin, T.O., et al. (2018) Tau Does Not Stabilize Axonal Microtubules But Rather Enables Them to Have Long Labile Domains. Current Biology, 28, 2181-2189.E4. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Cheng, H. and Huang, G. (2018) Synthesis and Activity of Epothilone D. Current Drug Targets, 19, 1866-1870. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Zhang, B., Carroll, J., Trojanowski, J.Q., et al. (2012) The Microtubule-Stabilizing Agent, Epothilone D, Reduces Axonal Dysfunction, Neurotoxicity, Cognitive Deficits, and Alzheimer-Like Pathology in an Interventional Study with Aged Tau Transgenic Mice. Journal of Neuroscience, 32, 3601-3611. [Google Scholar] [CrossRef]
|
|
[48]
|
Atri, A. (2019) Current and Future Treatments in Alzheimer’s Disease. Seminars in Neurology, 39, 227-240. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Soeda, Y. and Takashima, A. (2020) New Insights into Drug Discovery Targeting Tau Protein. Frontiers in Molecular Neuroscience, 13, Article 590896. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Karami, A., Eriksdotter, M., Kadir, A., et al. (2019) CSF Cholinergic Index, a New Biomeasure of Treatment Effect in Patients with Alzheimer’s Disease. Frontiers in Molecular Neuroscience, 12, Article 476562. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Sharma, K. (2019) Cholinesterase Inhibitors as Alzheimer’s Therapeutics (Review). Molecular Medicine Reports, 20, 1479-1487. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Asamoah Botchway, B.O. and Iyer, I.C. (2017) Alzheimer’s Disease—The Past, the Present and the Future. Science Journal of Clinical Medicine, 6, 1-19. [Google Scholar] [CrossRef]
|
|
[53]
|
Colovic, M.B., Krstic, D.Z., Lazarevic-Pasti, T.D., et al. (2013) Acetylcholinesterase Inhibitors: Pharmacology and Toxicology. Current Neuropharmacology, 11, 315-335. [Google Scholar] [CrossRef]
|
|
[54]
|
Li, N., Wang, J., Ma, J., et al. (2015) Neuroprotective Effects of Cistanches Herba Therapy on Patients with Moderate Alzheimer’s Disease. Evidence-Based Complementary and Alternative Medicine, 2015, Article ID: 103985. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Liu, Y., Zhang, Y., Zheng, X., et al. (2018) Galantamine Improves Cognition, Hippocampal Inflammation, and Synaptic Plasticity Impairments Induced by Lipopolysaccharide in Mice. Journal of Neuroinflammation, 15, Article No. 112. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Dou, K.X., Tan, M.S., Tan, C.C., et al. (2018) Comparative Safety and Effectiveness of Cholinesterase Inhibitors and Memantine for Alzheimer’s Disease: A Network Meta-Analysis of 41 Randomized Controlled Trials. Alzheimer’s Research & Therapy, 10, Article No. 126. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Fish, P.V., Steadman, D., Bayle, E.D. and Whiting, P. (2019) New Approaches for the Treatment of Alzheimer’s Disease. Bioorganic & Medicinal Chemistry Letters, 29, 125-133. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Khan, S., Barve, K.H. and Kumar, M.S. (2020) Recent Advancements in Pathogenesis, Diagnostics and Treatment of Alzheimer’s Disease. Current Neuropharmacology, 18, 1106-1125. [Google Scholar] [CrossRef]
|
|
[59]
|
Matsunaga, S., Kishi, T. and Iwata, N. (2015) Memantine Monotherapy for Alzheimer’s Disease: A Systematic Review and Meta-Analysis. PLOS ONE, 10, e123289. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Danysz, W. and Parsons, C.G. (2012) Alzheimer’s Disease, β-Amyloid, Glutamate, NMDA Receptors and Memantine—Searching for the Connections. British Journal of Pharmacology, 167, 324-352. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Xia, P., Chen, H.S., Zhang, D., et al. (2010) Memantine Preferentially Blocks Extrasynaptic over Synaptic NMDA Receptor Currents in Hippocampal Autapses. Journal of Neuroscience, 30, 11246-11250. [Google Scholar] [CrossRef]
|
|
[62]
|
Briggs, R., Kennelly, S.P. and O’Neill, D. (2016) Drug Treatments in Alzheimer’s Disease. Clinical Medicine Journal, 16, 247-253. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Mcshane, R., Westby, M.J., Roberts, E., et al. (2019) Memantine for Dementia. Cochrane Database of Systematic Reviews, 3, CD003154. [Google Scholar] [CrossRef]
|
|
[64]
|
宋美潓. 美金刚联合脑电磁治疗阿尔茨海默症伴痴呆行为精神症状的影响分析[J]. 中国冶金工业医学杂志, 2023, 40(6): 685-686.
|
|
[65]
|
Zuo, X., Dai, H., Zhang, H., et al. (2018) A Peptide-WS2 Nanosheet Based Biosensing Platform for Determination of β-Secretase and Screening of Its Inhibitors. Analyst, 143, 4585-4591. [Google Scholar] [CrossRef]
|
|
[66]
|
Kumar, A., Tiwari, A. and Sharma, A. (2018) Changing Paradigm from One Target One Ligand towards Multi-Target Directed Ligand Design for Key Drug Targets of Alzheimer Disease: An Important Role of in Silico Methods in Multi-Target Directed Ligands Design. Current Neuropharmacology, 16, 726-739. [Google Scholar] [CrossRef]
|
|
[67]
|
Waller, E.S., Yardeny, B.J., Fong, W.Y., et al. (2022) Altered Peripheral Factors Affecting the Absorption, Distribution, Metabolism, and Excretion of Oral Medicines in Alzheimer’s Disease. Advanced Drug Delivery Reviews, 185, Article ID: 114282. [Google Scholar] [CrossRef] [PubMed]
|