|
[1]
|
崔本文. 对乙酰氨基酚所致肝损伤炎症机制及竹节参皂苷V的干预作用研究[D]: [博士学位论文]. 延吉: 延边大学, 2020: 4-5.
|
|
[2]
|
McGill, M.R. and Jaeschke, H. (2013) Metabolism and Disposition of Acetaminophen: Recent Advances in Relation to Hepatotoxicity and Diagnosis. Pharmaceutical Research, 30, 2174-2187. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Cohen, S.D., Pumford, N.R., Khairallah, E.A., et al. (1997) Selective Protein Covalent Binding and Target Organ Toxicity. Toxicology and Applied Pharmacology, 143, 1-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Iverson, S.V., Eriksson, S., Xu, J., et al. (2013) A Txnrd1-Dependent Metabolic Switch Alters Hepatic Lipogenesis, Glycogen Storage, and Detoxification. Free Radical Biology and Medicine, 63, 369-380. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Yuan, L. and Kaplowitz, N. (2013) Mechanisms of Drug-Induced Liver Injury. Clinics in Liver Disease, 17, 507-518. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Qiu, Y., Benet, L.Z. and Burlingame, A.L. (1998) Identification of the Hepatic Protein Targets of Reactive Metabolites of Acetaminophen in Vivo in Mice Using Two-Dimensional Gel Electrophoresis and Mass Spectrometry. Journal of Biological Chemistry, 273, 17940-17953. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Tirmenstein, M.A. and Nelson, S.D. (1990) Acetaminophen-Induced Oxidation of Protein Thiols. Contribution of Impaired Thiol-Metabolizing Enzymes and the Breakdown of Adenine Nucleotides. Journal of Biological Chemistry, 265, 3059-3065. [Google Scholar] [CrossRef]
|
|
[8]
|
Du, K., Ramachandran, A., Weemhoff, J.L., et al. (2016) Editor’s Highlight: Metformin Protects against Acetaminophen Hepatotoxicity by Attenuation of Mitochondrial Oxidant Stress and Dysfunction. Toxicological Sciences, 154, 214-226. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Yan, M., Huo, Y., Yin, S., et al. (2018) Mechanisms of Acetaminophen-Induced Liver Injury and Its Implications for Therapeutic Interventions. Redox Biology, 17, 274-283. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Woolbright, B.L. and Jaeschke, H. (2017) Mechanisms of Acetaminophen-Induced Liver Injury. In: Ding, W.-X. and Yin, X.-M., Eds., Cellular Injury in Liver Diseases, Springer, Berlin, 55-76. [Google Scholar] [CrossRef]
|
|
[11]
|
Gujral, J.S., Knight, T.R., Farhood, A., et al. (2002) Mode of Cell Death after Acetaminophen Overdose in Mice: Apoptosis or Oncotic Necrosis? Toxicological Sciences, 67, 322-328. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Jaeschke, H. and Ramachandran, A. (2024) Acetaminophen Hepatotoxicity: Paradigm for Understanding Mechanisms of Drug-Induced Liver Injury. Annual Review of Pathology: Mechanisms of Disease, 19, 453-478. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Yang, G., Zhang, L., Ma, L., et al. (2017) Glycyrrhetinic Acid Prevents Acetaminophen-Induced Acute Liver Injury via the Inhibition of CYP2E1 Expression and HMGB1-TLR4 Signal Activation in Mice. International Immunopharmacology, 50, 186-193. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Jaeschke, H., McGill, M.R. and Ramachandran, A. (2012) Oxidant Stress, Mitochondria, and Cell Death Mechanisms in Drug-Induced Liver Injury: Lessons Learned from Acetaminophen Hepatotoxicity. Drug Metabolism Reviews, 44, 88-106. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
McGill, M.R., Lebofsky, M., Norris, H.R.K., et al. (2013) Plasma and Liver Acetaminophen-Protein Adduct Levels in Mice after Acetaminophen Treatment: Dose-Response, Mechanisms, and Clinical Implications. Toxicology and Applied Pharmacology, 269, 240-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Heard, K.J., Green, J.L., James, L.P., et al. (2011) Acetaminophen-Cysteine Adducts during Therapeutic Dosing and Following Overdose. BMC Gastroenterology, 11, Article No. 20. [Google Scholar] [CrossRef]
|
|
[17]
|
Shi, R., Guberman, M. and Kirshenbaum, L.A. (2018) Mitochondrial Quality Control: The Role of Mitophagy in Aging. Trends in Cardiovascular Medicine, 28, 246-260. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Tujios, S. and Fontana, R.J. (2011) Mechanisms of Drug-Induced Liver Injury: From Bedside to Bench. Nature Reviews Gastroenterology & Hepatology, 8, 202-211. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Hartmut, J.R.M.M. and Anup, R. (2012) Oxidant Stress, Mitochondria, and Cell Death Mechanisms in Drug-Induced Liver Injury: Lessons Learned from Acetaminophen Hepatotoxicity. Drug Metabolism Reviews, 44, 88-106. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Russell, R.C., Tian, Y., Yuan, H., et al. (2013) ULK1 Induces Autophagy by Phosphorylating Beclin-1 and Activating VPS34 Lipid Kinase. Nature Cell Biology, 15, 741-750. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Kim, J., Kundu, M., Viollet, B., et al. (2011) AMPK and MTOR Regulate Autophagy through Direct Phosphorylation of Ulk1. Nature Cell Biology, 13, 132-141. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Egan, D.F., Shackelford, D.B., Mihaylova, M.M., et al. (2011) Phosphorylation of ULK1 (HATG1) by AMP-Activated Protein Kinase Connects Energy Sensing to Mitophagy. Science, 331, 456-461. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Inoki, K., Zhu, T. and Guan, K.L. (2003) TSC2 Mediates Cellular Energy Response to Control Cell Growth and Survival. Cell, 115, 577-590. [Google Scholar] [CrossRef]
|
|
[24]
|
Gwinn, D.M., Shackelford, D.B., Egan, D.F., et al. (2008) AMPK Phosphorylation of Raptor Mediates a Metabolic Checkpoint. Molecular Cell, 30, 214-226. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Wang, B., Nie, J., Wu, L., et al. (2018) AMPKα2 Protects against the Development of Heart Failure by Enhancing Mitophagy via PINK1 Phosphorylation. Circulation Research, 122, 712-729. [Google Scholar] [CrossRef]
|
|
[26]
|
Mizushima, N. (2010) The Role of the Atg1/ULK1 Complex in Autophagy Regulation. Current Opinion in Cell Biology, 22, 132-139. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Ravikumar, B., Sarkar, S., Davies, J.E., et al. (2010) Regulation of Mammalian Autophagy in Physiology and Pathophysiology. Physiological Reviews, 90, 1383-1435. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Mizushima, N., Yoshimori, T. and Levine, B. (2010) Methods in Mammalian Autophagy Research. Cell, 140, 313-326. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Shan, S., Shen, Z. and Song, F. (2018) Autophagy and Acetaminophen-Induced Hepatotoxicity. Archives of Toxicology, 92, 2153-2161. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Zawel, L., Le Dai, J., Buckhaults, P., et al. (1998) Human Smad3 and Smad4 Are Sequence-Specific Transcription Activators. Molecular Cell, 1, 611-617. [Google Scholar] [CrossRef]
|
|
[31]
|
Bayne, A.N. and Trempe, J.F. (2019) Mechanisms of PINK1, Ubiquitin and Parkin Interactions in Mitochondrial Quality Control and Beyond. Cellular and Molecular Life Sciences, 76, 4589-4611. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Lee, S.B., Kim, J.J., Han, S.A., et al. (2019) The AMPK-Parkin Axis Negatively Regulates Necroptosis and Tumorigenesis by Inhibiting the Necrosome. Nature Cell Biology, 21, 940-951. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Callegari, S., Oeljeklaus, S., Warscheid, B., et al. (2017) Phospho-Ubiquitin-PARK2 Complex as a Marker for Mitophagy Defects. Autophagy, 13, 201-211. [Google Scholar] [CrossRef] [PubMed]
|