|
[1]
|
Sung, H., Ferlay, J., Siegel, R.L, et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Bray, F., Ferlay, J., Soerjomataram, I., et al. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Bailey, C.E., Hu, C.Y., You, Y.N., et al. (2015) Increasing Disparities in the Age-Related Incidences of Colon and Rectal Cancers in the United States, 1975-2010. JAMA Surgery, 150, 17-22. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Kasi, P.M., Shahjehan, F., Cochuyt, J.J., et al. (2019) Rising Proportion of Young Individuals with Rectal and Colon Cancer. Clinical Colorectal Cancer, 18, E87-E95. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Henrikson, N.B., Webber, E.M., Goddard, K.A., et al. (2015) Family History and the Natural History of Colorectal Cancer: Systematic Review. Genetics in Medicine: Official Journal of the American College of Medical Genetics, 17, 702-712. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Schoen, R.E., Razzak, A., Yu, K.J., et al. (2015) Incidence and Mortality of Colorectal Cancer in Individuals with a Family History of Colorectal Cancer. Gastroenterology, 149, 1438-1445.E1. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Lowery, J.T., Ahnen, D.J., Schroy, P.C., et al. (2016) Understanding the Contribution of Family History to Colorectal Cancer Risk and Its Clinical Implications: A State-of-the-Science Review. Cancer, 122, 2633-2645. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Syngal, S., Brand, R.E., Church, J.M., et al. (2015) ACG Clinical Guideline: Genetic Testing and Management of Hereditary Gastrointestinal Cancer Syndromes. The American Journal of Gastroenterology, 110, 223-262. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Brenner, H., Chang-Claude, J., Seiler, C.M., et al. (2011) Protection from Colorectal Cancer after Colonoscopy: A Population-Based, Case-Control Study. Annals of Internal Medicine, 154, 22-30. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Morris, E.J., Rutter, M.D., Finan, P.J., et al. (2015) Post-Colonoscopy Colorectal Cancer (PCCRC) Rates Vary Considerably Depending on the Method Used to Calculate Them: A Retrospective Observational Population-Based Study of PCCRC in the English National Health Service. Gut, 64, 1248-1256. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Kaminski, M.F., Regula, J., Kraszewska, E., et al. (2010) Quality Indicators for Colonoscopy and the Risk of Interval Cancer. The New England Journal of Medicine, 362, 1795-1803. [Google Scholar] [CrossRef]
|
|
[12]
|
Thompson, M.R., Perera, R., Senapati, A., et al. (2007) Predictive Value of Common Symptom Combinations in Diagnosing Colorectal Cancer. The British Journal of Surgery, 94, 1260-1265. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Tajrishi, M.M., Tuteja, R. and Tuteja, N. (2011) Nucleolin: The Most Abundant Multifunctional Phosphoprotein of Nucleolus. Communicative & Integrative Biology, 4, 267-275. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Orrick, L.R., Olson, M.O. and Busch, H. (1973) Comparison of Nucleolar Proteins of Normal Rat Liver and Novikoff Hepatoma Ascites Cells by Two-Dimensional Polyacrylamide Gel Electrophoresis. Proceedings of the National Academy of Sciences of the United States of America, 70, 1316-1320. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Jia, W., Yao, Z., Zhao, J., et al. (2017) New Perspectives of Physiological and Pathological Functions of Nucleolin (NCL). Life Sciences, 186, 1-10. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Chen, Z. and Xu, X. (2016) Roles of Nucleolin. Focus on Cancer and Anti-Cancer Therapy. Saudi Medical Journal, 37, 1312-1318. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Tonello, F., Massimino, M.L. and Peggion, C. (2022) Nucleolin: A Cell Portal for Viruses, Bacteria, and Toxins. Cellular and Molecular Life Sciences: CMLS, 79, Article No. 271. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Raska, I., Shaw, P.J. and Cmarko, D. (2006) New Insights into Nucleolar Architecture and Activity. International Review of Cytology, 255, 177-235. [Google Scholar] [CrossRef]
|
|
[19]
|
Wang, X., Cheng, H., Hu, D., et al. (2023) Nucleolin Promotes Tumor Growth in Colorectal Cancer by Enhancing HnRNPA1-Mediated PKM2 Alternative Splicing. Genes & Diseases, 10, 2237-2240. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Satake, Y., Kuwano, Y., Nishikawa, T., et al. (2018) Nucleolin Facilitates Nuclear Retention of an Ultraconserved Region Containing TRA2β4 and Accelerates Colon Cancer Cell Growth. Oncotarget, 9, 26817-26833. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Wang, X., Yu, H., Sun, W., et al. (2018) The Long Non-Coding RNA CYTOR Drives Colorectal Cancer Progression by Interacting with NCL and Sam68. Molecular Cancer, 17, Article No. 110. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Kirman, D.C., Renganathan, B., Chui, W.K., et al. (2022) Cell Surface Nucleolin Is a Novel ADAMTS5 Receptor Mediating Endothelial Cell Apoptosis. Cell Death & Disease, 13, Article No. 172. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Berger, C.M., Gaume, X. and Bouvet, P. (2015) The Roles of Nucleolin Subcellular Localization in Cancer. Biochimie, 113, 78-85. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Wise, J.F., Berkova, Z., Mathur, R., et al. (2013) Nucleolin Inhibits Fas Ligand Binding and Suppresses Fas-Mediated Apoptosis in Vivo via a Surface Nucleolin-Fas Complex. Blood, 121, 4729-4739. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Farin, K., Schokoroy, S., Haklai, R., et al. (2011) Oncogenic Synergism Between ErbB1, Nucleolin, and Mutant Ras. Cancer Research, 71, 2140-2151. [Google Scholar] [CrossRef]
|
|
[26]
|
Qi, J., Li, H., Liu, N., et al. (2015) The Implications and Mechanisms of the Extra-Nuclear Nucleolin in the Esophageal Squamous Cell Carcinomas. Medical Oncology (Northwood, London, England), 32, Article No. 45. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Fujiki, H., Watanabe, T. and Suganuma, M. (2014) Cell-Surface Nucleolin Acts as a Central Mediator for Carcinogenic, Anti-Carcinogenic, and Disease-Related Ligands. Journal of Cancer Research and Clinical Oncology, 140, 689-699. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Yangngam, S., Prasopsiri, J., Hatthakarnkul, P., et al. (2022) Cellular Localization of Nucleolin Determines the Prognosis in Cancers: A Meta-Analysis. Journal of Molecular Medicine (Berlin, Germany), 100, 1145-1157. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Wu, D.M., Zhang, P., Liu, R.Y., et al. (2014) Phosphorylation and Changes in the Distribution of Nucleolin Promote Tumor Metastasis via the PI3K/Akt Pathway in Colorectal Carcinoma. FEBS Letters, 588, 1921-1929. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Yang, Y., Yang, C. and Zhang, J. (2015) C23 Protein Meditates Bone Morphogenetic Protein-2-Mediated EMT via Up-Regulation of Erk1/2 and Akt in Gastric Cancer. Medical Oncology (Northwood, London, England), 32, Article No. 76. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Qiu, W., Zhou, F., Zhang, Q., et al. (2013) Overexpression of Nucleolin and Different Expression Sites both Related to the Prognosis of Gastric Cancer. APMIS: Acta Pathologica, Microbiologica, et Immunologica Scandinavica, 121, 919-925. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Azman, M.S., Alard, E.L., Dodel, M., et al. (2023) An ERK1/2-Driven RNA-Binding Switch in Nucleolin Drives Ribosome Biogenesis and Pancreatic Tumorigenesis Downstream of RAS Oncogene. The EMBO Journal, 42, E110902. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Tominaga, K., Srikantan, S., Lee, E.K., et al. (2011) Competitive Regulation of Nucleolin Expression by HuR and MiR-494. Molecular and Cellular Biology, 31, 4219-4231. [Google Scholar] [CrossRef]
|
|
[34]
|
Soundararajan, S., Chen, W., Spicer, E.K., et al. (2008) The Nucleolin Targeting Aptamer AS1411 Destabilizes Bcl-2 Messenger RNA in Human Breast Cancer Cells. Cancer Research, 68, 2358-2365. [Google Scholar] [CrossRef]
|
|
[35]
|
Chen, S.C., Hu, T.H., Huang, C.C., et al. (2015) Hepatoma-Derived Growth Factor/Nucleolin Axis as a Novel Oncogenic Pathway in Liver Carcinogenesis. Oncotarget, 6, 16253-16270. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Guo, X., Xiong, L., Yu, L., et al. (2014) Increased Level of Nucleolin Confers to Aggressive Tumor Progression and Poor Prognosis in Patients with Hepatocellular Carcinoma after Hepatectomy. Diagnostic Pathology, 9, Article No. 175. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Schokoroy, S., Juster, D., Kloog, Y., et al. (2013) Disrupting the Oncogenic Synergism between Nucleolin and Ras Results in Cell Growth Inhibition and Cell Death. PLOS ONE, 8, E75269. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Zhang, B., Wang, H., Jiang, B., et al. (2010) Nucleolin/C23 Is a Negative Regulator of Hydrogen Peroxide-Induced Apoptosis in HUVECs. Cell Stress & Chaperones, 15, 249-257. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Fogal, V., Sugahara, K.N., Ruoslahti, E., et al. (2009) Cell Surface Nucleolin Antagonist Causes Endothelial Cell Apoptosis and Normalization of Tumor Vasculature. Angiogenesis, 12, 91-100. [Google Scholar] [CrossRef] [PubMed]
|