| [1] | Schakelaar, M.Y., Monnikhof, M., Crnko, S., et al. (2022) Cellular Immunotherapy for Medulloblastoma. Neuro-Oncology, 25, 617-627. https://doi.org/10.1093/neuonc/noac236
 | 
                     
                                
                                    
                                        | [2] | Louis, D.N., Perry, A., Wesseling, P., et al. (2021) The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro-Oncology, 23, 1231-1251. https://doi.org/10.1093/neuonc/noab106
 | 
                     
                                
                                    
                                        | [3] | Luzzi, S., Lucifero, A.G., Brambilla, I., et al. (2020) Targeting the Medulloblastoma: A Molecular-Based Approach. Acta Bio Medica: AteneiParmensis, 91, 79-100. | 
                     
                                
                                    
                                        | [4] | Northcott, P.A., Shih, D.J., Peacock, J., et al. (2012) Subgroup Specific Structural Variation across 1,000 Medulloblastoma Genomes. Nature, 488, 49-56. https://doi.org/10.1038/nature11327
 | 
                     
                                
                                    
                                        | [5] | Taylor, M.D., Northcott, P.A., Korshunov, A., et al. (2012) Molecular Subgroups of Medulloblastoma: The Current Consensus. Acta Neuropathologica, 123, 465-472. https://doi.org/10.1007/s00401-011-0922-z
 | 
                     
                                
                                    
                                        | [6] | Kool, M., Korshunov, A., Remke, M., et al. (2012) Molecular Subgroups of Medulloblastoma: An International Meta-Analysis of Transcriptome, Genetic Aberrations, and Clinical Data of WNT, SHH, Group 3, and Group 4 Medulloblastomas. Acta Neuropathologica, 123, 473-484. https://doi.org/10.1007/s00401-012-0958-8
 | 
                     
                                
                                    
                                        | [7] | Li, J., Zhao, S., Lee, M., et al. (2020) Reliable Tumor Detection by Whole-Genome Methylation Sequencing of Cell-Free DNA in Cerebrospinal Fluid of Pediatric Medulloblastoma. Science Advances, 6, Eabb5427. https://doi.org/10.1126/sciadv.abb5427
 | 
                     
                                
                                    
                                        | [8] | Li, W., He, P., Huang, Y., et al. (2021) Selective Autophagy of Intracellular Organelles: Recent Research Advances. Theranostics, 11, 222-256. https://doi.org/10.7150/thno.49860
 | 
                     
                                
                                    
                                        | [9] | Xu, Y. and Wan, W. (2023) Acetylation in the Regulation of Autophagy. Autophagy, 19, 379-387. https://doi.org/10.1080/15548627.2022.2062112
 | 
                     
                                
                                    
                                        | [10] | Assaye, M.A. and Gizaw, S.T. (2022) Chaperone-Mediated Autophagy and Its Implications for Neurodegeneration and Cancer. International Journal of General Medicine, 15, 5635-5649. https://doi.org/10.2147/IJGM.S368364
 | 
                     
                                
                                    
                                        | [11] | Qiao, L., Hu, J., Qiu, X., et al. (2023) LAMP2A, LAMP2B and LAMP2C: Similar Structures, Divergent Roles. Autophagy, 19, 2837-2852. https://doi.org/10.1080/15548627.2023.2235196
 | 
                     
                                
                                    
                                        | [12] | Liu, J., Wang, L., He, H., et al. (2023) The Complex Role of Chaperone-Mediated Autophagy in Cancer Diseases. Biomedicines, 11, Article No. 2050. https://doi.org/10.3390/biomedicines11072050
 | 
                     
                                
                                    
                                        | [13] | Santana-Codina, N., Mancias, J.D. and Kimmelman, A.C. (2017) The Role of Autophagy in Cancer. Annual Review of Cancer Biology, 1, 19-39. https://doi.org/10.1146/annurev-cancerbio-041816-122338
 | 
                     
                                
                                    
                                        | [14] | Takamura, A., Komatsu, M., Hara, T., et al. (2011) Autophagy-Deficient Mice Develop Multiple Liver Tumors. Genes & Development, 25, 795-800. https://doi.org/10.1101/gad.2016211
 | 
                     
                                
                                    
                                        | [15] | Holdgaard, S.G., Cianfanelli, V., Pupo, E., et al. (2019) Selective Autophagy Maintains Centrosome Integrity and Accurate Mitosis by Turnover of Centriolar Satellites. Nature Communications, 10, Article No. 4176. https://doi.org/10.1038/s41467-019-12094-9
 | 
                     
                                
                                    
                                        | [16] | Schneider, J.L., Villarroya, J., Diaz-Carretero, A., et al. (2015) Loss of Hepatic Chapero3ne-Mediated Autophagy Accelerates Proteostasis Failure in Aging. Aging Cell, 14, 249-264. https://doi.org/10.1111/acel.12310
 | 
                     
                                
                                    
                                        | [17] | Rao, S., Gharib, K. and Han, A. (2019) Cancer Immunosurveillance by T Cells. International Review of Cell and Molecular Biology, 342, 149-173. https://doi.org/10.1016/bs.ircmb.2018.08.001
 | 
                     
                                
                                    
                                        | [18] | Arensman, M.D., Yang, X.S., Zhong, W., et al. (2020) Anti-Tumor Immunity Influences Cancer Cell Reliance upon ATG7. Oncoimmunology, 9, Article ID: 1800162. https://doi.org/10.1080/2162402X.2020.1800162
 | 
                     
                                
                                    
                                        | [19] | Miller, D.R. and Thorburn, A. (2021) Autophagy and Organelle Homeostasis in Cancer. Developmental Cell, 56, 906-918. https://doi.org/10.1016/j.devcel.2021.02.010
 | 
                     
                                
                                    
                                        | [20] | Yamamoto, K., Venida, A., Yano, J., et al. (2020) Autophagy Promotes Immune Evasion of Pancreatic Cancer by Degrading MHC-I. Nature, 581, 100-105. https://doi.org/10.1038/s41586-020-2229-5
 | 
                     
                                
                                    
                                        | [21] | Towers, C.G. et al. (2019) Cancer Cells Upregulate NRF2 Signaling to Adapt to Autophagy Inhibition. Developmental Cell, 50, 690-703.E6. https://doi.org/10.1016/j.devcel.2019.07.010
 | 
                     
                                
                                    
                                        | [22] | Lin, A.W. and Lowe, S.W. (2001) Oncogenic Ras Activates the ARF-P53 Pathway to Suppress Epithelial Cell Transformation. Proceedings of the National Academy of Sciences, 98, 5025-5030. https://doi.org/10.1073/pnas.091100298
 | 
                     
                                
                                    
                                        | [23] | Rosenfeldt, M.T., O’Prey, J., Morton, J.P., et al. (2013) P53 Status Determines the Role of Autophagy in Pancreatic Tumour Development. Nature, 504, 296-300. https://doi.org/10.1038/nature12865
 | 
                     
                                
                                    
                                        | [24] | Sursal, T., Ronecker, J.S., Dicpinigaitis, A.J., et al. (2022) Molecular Stratification of Medulloblastoma: Clinical Outcomes and Therapeutic Interventions. Anticancer Research, 42, 2225-2239. https://doi.org/10.21873/anticanres.15703
 | 
                     
                                
                                    
                                        | [25] | Dhanyamraju, P.K., Patel, T.N. and Dovat, S. (2020) Medulloblastoma: “Onset of the Molecular Era”. Molecular Biology Reports, 47, 9931-9937. https://doi.org/10.1007/s11033-020-05971-w
 | 
                     
                                
                                    
                                        | [26] | Nàger, M., Sallán, M.C., Visa, A., et al. (2018) Inhibition of WNT-CTNNB1 Signaling Upregulates SQSTM1 and Sensitizes Glioblastoma Cells to Autophagy Blockers. Autophagy, 14, 619-636. https://doi.org/10.1080/15548627.2017.1423439
 | 
                     
                                
                                    
                                        | [27] | Zhou, C., Liang, Y., Zhou, L., et al. (2021) TSPAN1 Promotes Autophagy Flux and Mediates Cooperation between WNT-CTNNB1 Signaling and Autophagy via the MIR454-FAM83A-TSPAN1 Axis in Pancreatic Cancer. Autophagy, 17, 3175-3195. https://doi.org/10.1080/15548627.2020.1826689
 | 
                     
                                
                                    
                                        | [28] | Bharambe, H.S., Paul, R., Panwalkar, P., et al. (2019) Downregulation of MiR-204 Expression Defines a Highly Aggressive Subset of Group 3/Group 4 Medulloblastomas. Acta Neuropathologica Communications, 7, Article No. 52. https://doi.org/10.1186/s40478-019-0697-3
 | 
                     
                                
                                    
                                        | [29] | Hwang, H.J. and Kim, Y.K. (2023) The Role of LC3B in Autophagy as an RNA-Binding Protein. Autophagy, 19, 1028-1030. https://doi.org/10.1080/15548627.2022.2111083
 | 
                     
                                
                                    
                                        | [30] | Bjørkøy, G., Lamark, T., Pankiv, S., et al. (2009) Monitoring Autophagic Degradation of P62/SQSTM1. Methods in Enzymology, 452, 181-197. https://doi.org/10.1016/S0076-6879(08)03612-4
 | 
                     
                                
                                    
                                        | [31] | Yin, Y., Zhang, B., Wang, W., et al. (2014) MiR-204-5p Inhibits Proliferation and Invasion and Enhances Chemotherapeutic Sensitivity of Colorectal Cancer Cells by Downregulating RAB22A. Clinical Cancer Research, 20, 6187-6199. https://doi.org/10.1158/1078-0432.CCR-14-1030
 | 
                     
                                
                                    
                                        | [32] | Zhou, L. and Ma, J. (2022) MIR99AHG/MiR-204-5p/TXNIP/Nrf2/ARE Signaling Pathway Decreases Glioblastoma Temozolomide Sensitivity. Neurotoxicity Research, 40, 1152-1162. https://doi.org/10.1007/s12640-022-00536-0
 | 
                     
                                
                                    
                                        | [33] | Garcia-Lopez, J., Kumar, R., Smith, K.S. and Northcott, P.A. (2021) Deconstructing Sonic Hedgehog Medulloblastoma: Molecular Subtypes, Drivers, and Beyond. Trends in Genetics, 37, 235-250. https://doi.org/10.1016/j.tig.2020.11.001
 | 
                     
                                
                                    
                                        | [34] | Paul, R., Bharambe, H. AndShirsat, N.V. (2020) Autophagy Inhibition Impairs the Invasion Potential of Medulloblastoma Cells. Molecular Biology Reports, 47, 5673-5680. https://doi.org/10.1007/s11033-020-05603-3
 | 
                     
                                
                                    
                                        | [35] | Bhoopathi, P, Chetty, C., Gujrati, M., et al. (2010) Cathepsin B Facilitates Autophagy Mediated Apoptosis in SPARC Overexpressed Primitive Neuroectodermal Tumor Cells. Cell Death & Differentiation, 17, 1529-1539. https://doi.org/10.1038/cdd.2010.28
 | 
                     
                                
                                    
                                        | [36] | Dudley, L.J., Cabodevilla, A.G., Makar, A.N., et al. (2019) Intrinsic Lipid Binding Activity of ATG16L1 Supports Efficient Membrane Anchoring and Autophagy. The EMBO Journal, 38, E100554. https://doi.org/10.15252/embj.2018100554
 | 
                     
                                
                                    
                                        | [37] | Bouras, E., Karakioulaki, M., Bougioukas, K.I., et al. (2019) Gene Promoter Methylation and Cancer: An Umbrella Review. Gene, 710, 333-340. https://doi.org/10.1016/j.gene.2019.06.023
 | 
                     
                                
                                    
                                        | [38] | Milla, L.A., González-Ramírez, C.N. and Palma, V. (2012) Sonic Hedgehog in Cancer Stem Cells: A Novel Link with Autophagy. Biological Research, 45, 223-230. https://doi.org/10.4067/S0716-97602012000300004
 | 
                     
                                
                                    
                                        | [39] | Menyhárt, O. and Győrffy, B. (2019) Principles of Tumorigenesis and Emerging Molecular Drivers of SHH-Activated Medulloblastomas. Annals of Clinical and Translational Neurology, 6, 990-1005. https://doi.org/10.1002/acn3.762
 | 
                     
                                
                                    
                                        | [40] | Samkari, A., White, J. and Packer, R. (2015) SHH Inhibitors for the Treatment of Medulloblastoma. Annals of Clinical and Translational Neurology, 15, 763-770. https://doi.org/10.1586/14737175.2015.1052796
 | 
                     
                                
                                    
                                        | [41] | Lhermitte, B. Blandin, A.F., Coca, A., et al. (2021) Signaling Pathway Deregulation and Molecular Alterations across Pediatric Medulloblastomas. Neurochirurgie, 67, 39-45. https://doi.org/10.1016/j.neuchi.2018.01.003
 | 
                     
                                
                                    
                                        | [42] | Li, X., Lyu, Y., Li, J. and Wang, X. (2022) AMBRA1 and Its Role as a Target for Anticancer Therapy. Frontiers in Oncology, 12, Article ID: 946086. https://doi.org/10.3389/fonc.2022.946086
 | 
                     
                                
                                    
                                        | [43] | Nazio, F., Po, A., Abballe, L., et al. (2021) Targeting Cancer Stem Cells in Medulloblastoma by Inhibiting AMBRA1 Dual Function in Autophagy and STAT3 Signalling. Acta Neuropathologica, 142, 537-564. https://doi.org/10.1007/s00401-021-02347-7
 | 
                     
                                
                                    
                                        | [44] | Zou, H., Poore, B., Broniscer, A., Pollack, I.F. and Hu, B. (2020) Molecular Heterogeneity and Cellular Diversity: Implications for Precision Treatment in Medulloblastoma. Cancers, 12, Article No. 643. https://doi.org/10.3390/cancers12030643
 | 
                     
                                
                                    
                                        | [45] | Singh, V.S., Dakhole, N.A., Deogharkar, A., et al. (2017) Restoration of MiR-30a Expression Inhibits Growth, Tumorigenicity of Medulloblastoma Cells Accompanied by Autophagy Inhibition. Biochemical and Biophysical Research Communications, 491, 946-952. https://doi.org/10.1016/j.bbrc.2017.07.140
 | 
                     
                                
                                    
                                        | [46] | Buzzetti, M., Morlando, S., Solomos, D., et al. (2021) Pre-Therapeutic Efficacy of the CDK Inhibitor Dinaciclib in Medulloblastoma Cells. Scientific Reports, 11, Article No. 5374. https://doi.org/10.1038/s41598-021-84082-3
 |