|
[1]
|
Siddiqui, J.A. and Partridge, N.C. (2016) Physiological Bone Remodeling: Systemic Regulation and Growth Factor Involvement. Physiology (Bethesda), 31, 233-245. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Oliveira, É.R., Nie, L., Podstawczyk, D., Allahbakhsh, A., Ratnayake, J., Brasil, D.L. and Shavandi, A. (2021) Advances in Growth Factor Delivery for Bone Tissue Engineering. International Journal of Molecular Sciences, 22, Article No. 903. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Cicciù, M. (2020) Growth Factor Applied to Oral and Regenerative Surgery. International Journal of Molecular Sciences, 21, Article No. 7752. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Seims, K.B., Hunt, N.K. and Chow, L.W. (2021) Strategies to Control or Mimic Growth Factor Activity for Bone, Cartilage, and Osteochondral Tissue Engineering. Bioconjugate Chemistry, 32, 861-878. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
James, A.W., LaChaud, G., Shen, J., Asatrian, G., Nguyen, V., Zhang, X., Ting, K. and Soo, C. (2016) A Review of the Clinical Side Effects of Bone Morphogenetic Protein-2. Tissue Engineering Part B: Reviews, 22, 284-297. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Schmidt-Bleek, K., Willie, B.M., Schwabe, P., Seemann, P. and Duda, G.N. (2016) BMPs in Bone Regeneration: Less Is More Effective, a Paradigm-Shift. Cytokine & Growth Factor Reviews, 27, 141-148. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Senta, H., Park, H., Bergeron, E., Drevelle, O., Fong, D., Leblanc, E., Cabana, F., Roux, S., Grenier, G. and Faucheux, N. (2009) Cell Responses to Bone Morphogenetic Proteins and Peptides Derived from Them: Biomedical Applications and Limitations. Cytokine & Growth Factor Reviews, 20, 213-222. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Aoki, K., Alles, N., Soysa, N. and Ohya, K. (2012) Peptide-Based Delivery to Bone. Advanced Drug Delivery Reviews, 64, 1220-1238. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Einhorn, T.A. and Gerstenfeld, L.C. (2015) Fracture Healing: Mechanisms and Interventions. Nature Reviews Rheumatology, 11, 45-54. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Timin, A.S., Muslimov, A.R., Zyuzin, M.V., Peltek, O.O., Karpov, T.E., Sergeev, I.S., Dotsenko, A.I., Goncharenko, A.A., Yolshin, N.D., Sinelnik, A., et al. (2018) Multifunctional Scaffolds with Improved Antimicrobial Properties and Osteogenicity Based on Piezoelectric Electrospun Fibers Decorated with Bioactive Composite Microcapsules. ACS Applied Materials & Interfaces, 10, 34849-34868. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Briquez, P.S., Hubbell, J.A. and Martino, M.M. (2015) Extracellular Matrix-Inspired Growth Factor Delivery Systems for Skin Wound Healing. Advances in Wound Care, 4, 479-489. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Ai-Aql, Z.S., Alagl, A.S., Graves, D.T., Gerstenfeld, L.C. and Einhorn, T.A. (2008) Molecular Mechanisms Controlling Bone Formation during Fracture Healing and Distraction Osteogenesis. Journal of Dental Research, 87, 107-118. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Ho-Shui-Ling, A., Bolander, J., Rustom, L.E., Johnson, A.W., Luyten, F.P. and Picart, C. (2018) Bone Regeneration Strategies: Engineered Scaffolds, Bioactive Molecules and Stem Cells Current Stage and Future Perspectives. Biomaterials, 180, 143-162. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
King, W.J. and Krebsbach, P.H. (2012) Growth Factor Delivery: How Surface Interactions Modulate Release in Vitro and in Vivo. Advanced Drug Delivery Reviews, 64, 1239-1256. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Martin, V. and Bettencourt, A. (2018) Bone Regeneration: Biomaterials as Local Delivery Systems with Improved Osteoinductive Properties. Materials Science & Engineering C-Materials for Biological Applications, 82, 363-371. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Van Griensven, M. (2015) Preclinical Testing of Drug Delivery Systems to Bone. Advanced Drug Delivery Reviews, 94, 151-164. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Safari, B., Davaran, S. and Aghanejad, A. (2021) Osteogenic Potential of the Growth Factors and Bioactive Molecules in Bone Regeneration. International Journal of Biological Macromolecules, 175, 544-557. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Pountos, I., Panteli, M., Lampropoulos, A., Jones, E., Calori, G.M. and Giannoudis, P.V. (2016) The Role of Peptides in Bone Healing and Regeneration: A Systematic Review. BMC Medicine, 14, Article No. 103. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Katagiri, T. and Watabe, T. (2016) Bone Morphogenetic Proteins. Cold Spring Harbor Perspectives in Biology, 8, A021899. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Kirsch, T., Nickel, J. and Sebald, W. (2000) BMP-2 Antagonists Emerge from Alterations in the Low-Affinity Binding Epitope for Receptor BMPR-II. EMBO Journal, 19, 3314-3324. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Kirsch, T., Sebald, W. and Dreyer, M.K. (2000) Crystal Structure of the BMP-2-BRIA Ectodomain Complex. Nature Structural & Molecular Biology, 7, 492-496. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Saito, A., Suzuki, Y., Ogata, S.I., Ohtsuki, C. and Tanihara, M. (2003) Activation of Osteo-Progenitor Cells by a Novel Synthetic Peptide Derived from the Bone Morphogenetic Protein-2 Knuckle Epitope. Biochimica et Biophysica Acta, 1651, 60-67. [Google Scholar] [CrossRef]
|
|
[23]
|
Park, S.H., Park, J.Y., Ji, Y.B., Ju, H.J., Min, B.H. and Kim, M.S. (2020) An Injectable Click-Crosslinked Hyaluronic Acid Hydrogel Modified with a BMP-2 Mimetic Peptide as a Bone Tissue Engineering Scaffold. Acta Biomaterialia, 117, 108-120. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Bain, J.L., Bonvallet, P.P., Abou-Arraj, R.V., Schupbach, P., Reddy, M.S. and Bellis, S.L. (2015) Enhancement of the Regenerative Potential of Anorganic Bovine Bone Graft Utilizing a Polyglutamate-Modified BMP2 Peptide with Improved Binding to Calcium-Containing Materials. Tissue Engineering Part A, 21, 2426-2436. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Weng, L., Boda, S.K., Wang, H., Teusink, M.J., Shuler, F.D. and Xie, J. (2018) Novel 3D Hybrid Nanofiber Aerogels Coupled with BMP-2 Peptides for Cranial Bone Regeneration. Advanced Healthcare Materials, 7, E1701415. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Li, W., Xu, H., Han, X., Sun, S., Chai, Q., Xu, X. and Man, Z. (2020) Simultaneously Promoting Adhesion and Osteogenic Differentiation of Bone Marrow-Derived Mesenchymal Cells by a Functional Electrospun Scaffold. Colloids and Surfaces B: Biointerfaces, 192, Article ID: 111040. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Lee, J.Y., Choo, J.E., Choi, Y.S., Suh, J.S., Lee, S.J., Chung, C.P. and Park, Y.J. (2009) Osteoblastic Differentiation of Human Bone Marrow Stromal Cells in Self-Assembled BMP-2 Receptor-Binding Peptide-Amphiphiles. Biomaterials, 30, 3532-3541. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Minguela, J., Müller, D.W., Mücklich, F., Llanes, L., Ginebra, M.P., Roa, J.J. and Mas-Moruno, C. (2021) Peptidic Biofunctionalization of Laser Patterned Dental Zirconia: A Biochemical-Topographical Approach. Materials Science & Engineering C-Materials for Biological Applications, 125, Article ID: 112096. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Oliver-Cervelló, L., Martin-Gómez, H., Reyes, L., Noureddine, F., Ada Cavalcanti-Adam, E., Ginebra, M.P. and Mas-Moruno, C. (2021) An Engineered Biomimetic Peptide Regulates Cell Behavior by Synergistic Integrin and Growth Factor Signaling. Advanced Healthcare Materials, 10, E2001757. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Oliver-Cervelló, L., Martin-Gómez, H., Mandakhbayar, N., Jo, Y.W., Cavalcanti-Adam, E.A., Kim, H.W., Ginebra, M.P., Lee, J.H. and Mas-Moruno, C. (2022) Mimicking Bone Extracellular Matrix: From BMP-2-Derived Sequences to Osteogenic-Multifunctional Coatings. Advanced Healthcare Materials, 11, E2201339. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Oliver-Cervelló, L., Martin-Gómez, H., Gonzalez-Garcia, C., Salmeron-Sanchez, M., Ginebra, M.P. and Mas-Moruno, C. (2023) Protease-Degradable Hydrogels with Multifunctional Biomimetic Peptides for Bone Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 11, Article ID: 1192436. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Kim, H.K., Kim, J.H., Park, D.S., Park, K.S., Kang, S.S., Lee, J.S., Jeong, M.H. and Yoon, T.R. (2012) Osteogenesis Induced by a Bone Forming Peptide from the Prodomain Region of BMP-7. Biomaterials, 33, 7057-7063. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Luo, Z., Yang, Y., Deng, Y., Sun, Y., Yang, H. and Wei, S. (2016) Peptide-Incorporated 3D Porous Alginate Scaffolds with Enhanced Osteogenesis for Bone Tissue Engineering. Colloids and Surfaces B: Biointerfaces, 143, 243-251. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Luo, Z., Zhang, S., Pan, J., Shi, R., Liu, H., Lyu, Y., Han, X., Li, Y., Yang, Y., Xu, Z., Sui, Y., Luo, E., Zhang, Y. and Wei, S. (2018) Time-Responsive Osteogenic Niche of Stem Cells: A Sequentially Triggered, Dual-Peptide Loaded, Alginate Hybrid System for Promoting Cell Activity and Osteo-Differentiation. Biomaterials, 163, 25-42. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Jing, X., Xie, B., Li, X., Dai, Y., Nie, L. and Li, C. (2021) Peptide Decorated Demineralized Dentin Matrix with Enhanced Bioactivity, Osteogenic Differentiation via Carboxymethyl Chitosan. Dental Materials, 37, 19-29. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Bergeron, E., Senta, H., Mailloux, A., Park, H., Lord, E. and Faucheux, N. (2009) Murine Preosteoblast Differentiation Induced by a Peptide Derived from Bone Morphogenetic Proteins-9. Tissue Engineering Part A, 15, 3341-3349. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Bergeron, E., Marquis, M.E., Chrétien, I. and Faucheux, N. (2007) Differentiation of Preosteoblasts Using a Delivery System with BMPs and Bioactive Glass Microspheres. Journal of Materials Science: Materials in Medicine, 18, 255-263. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Bergeron, E., Leblanc, E., Drevelle, O., Giguère, R. and Faucheux, N. (2011) The Evaluation of Ectopic Bone Formation Induced by Delivery Systems for BMP-9 or Its Derived Peptide. Tissue Engineering Part A, 18, 342-352. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Beauvais, S., Drevelle, O., Lauzon, M.A., Daviau, A. and Faucheux, N. (2016) Modulation of MAPK Signalling by Immobilized Adhesive Peptides: Effect on Stem Cell Response to BMP-9-Derived Peptides. Acta Biomaterialia, 31, 241-251. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Melincovici, C.S., Boşca, A.B., Şuşman, S., Mărginean, M., Mihu, C., Istrate, M., Moldovan, I.M., Roman, A.L. and Mihu, C.M. (2018) Vascular Endothelial Growth Factor (VEGF)—Key Factor in Normal and Pathological Angiogenesis. Romanian Journal of Morphology and Embryology, 59, 455-467.
|
|
[41]
|
D’Andrea, L.D., Iaccarino, G., Fattorusso, R., Sorriento, D., Carannante, C., Capasso, D., Trimarco, B. and Pedone, C. (2005) Targeting Angiogenesis: Structural Characterization and Biological Properties of a De Novo Engineered VEGF Mimicking Peptide. Proceedings of the National Academy of Sciences of the United States of America, 102, 14215-14220. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Li, R., Zhou, C., Chen, J., Luo, H., Li, R., Chen, D., Zou, X. and Wang, W. (2022) Synergistic Osteogenic and Angiogenic Effects of KP and QK Peptides Incorporated with an Injectable and Self-Healing Hydrogel for Efficient Bone Regeneration. Bioactive Materials, 18, 267-283. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Xiang, M., Zhu, M., Yang, Z., He, P., Wei, J., Gao, X. and Song, J. (2020) Dual-Functionalized Apatite Nanocomposites with Enhanced Cytocompatibility and Osteogenesis for Periodontal Bone Regeneration. ACS Biomaterials Science & Engineering, 6, 1704-1714. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Pensa, N.W., Curry, A.S., Reddy, M.S. and Bellis, S.L. (2019) The Addition of a Polyglutamate Domain to the Angiogenic QK Peptide Improves Peptide Coupling to Bone Graft Materials Leading to Enhanced Endothelial Cell Activation. PLOS ONE, 14, E0213592. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Bai, S., Zhang, J., Gao, Y., Chen, X., Wang, K. and Yuan, X. (2023) Surface Functionalization of Electrospun Scaffolds by QK-AG73 Peptide for Enhanced Interaction with Vascular Endothelial Cells. Langmuir, 39, 14162-14172. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Xu, W., Wu, Y., Lu, H., Zhang, X., Zhu, Y., Liu, S., Zhang, Z., Ye, J. and Yang, W. (2023) Injectable Hydrogel Encapsulated with VEGF-Mimetic Peptide-Loaded Nanoliposomes Promotes Peripheral Nerve Repair in Vivo. Acta Biomaterialia, 160, 225-238. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Chen, Z., Wang, L., Guo, C., Qiu, M., Cheng, L., Chen, K., Qi, J., Deng, L., He, C., Li, X. and Yan, Y. (2023) Vascularized Polypeptide Hydrogel Modulates Macrophage Polarization for Wound Healing. Acta Biomaterialia, 155, 218-234. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Li, B., Li, Y., Chen, S., Wang, Y. and Zheng, Y. (2023) VEGF Mimetic Peptide-Conjugated Nanoparticles for Magnetic Resonance Imaging and Therapy of Myocardial Infarction. Journal of Controlled Release, 360, 44-56. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Lacey, D.L., Timms, E., Tan, H.L., et al. (1998) Osteoprotegerin Ligand Is a Cytokine That Regulates Osteoclast Differentiation and Activation. Cell, 93, 165-176. [Google Scholar] [CrossRef]
|
|
[50]
|
De Leon-Oliva, D., Barrena-Blázquez, S., Jiménez-Álvarez, L., Fraile-Martinez, O., García-Montero, C., López-González, L., Torres-Carranza, D., García-Puente, L.M., Carranza, S.T., Álvarez-Mon, M.Á., Álvarez-Mon, M., Diaz, R. and Ortega, M.A. (2023) The RANK-RANKL-OPG System: A Multifaceted Regulator of Homeostasis, Immunity, and Cancer. Medicina (Kaunas), 59, Article No. 1752. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Cheng, X., Kinosaki, M., Takami, M., Choi, Y., Zhang, H. and Murali, R. (2004) Disabling of Receptor Activator of Nuclear Factor-KappaB (RANK) Receptor Complex by Novel Osteoprotegerin-Like Peptidomimetics Restores Bone Loss in Vivo. Journal of Biological Chemistry, 279, 8269-8277. [Google Scholar] [CrossRef]
|
|
[52]
|
Uehara, T., Mise-Omata, S., Matsui, M., Tabata, Y., Murali, R., Miyashin, M. and Aoki, K. (2016) Delivery of RANKL-Binding Peptide OP3-4 Promotes BMP-2-Induced Maxillary Bone Regeneration. Journal of Dental Research, 95, 665-672. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Luo, P., Fang, J., Yang, D., Yu, L., Chen, H., Jiang, C., Guo, R., Zhu, T. and Tang, S. (2023) OP3-4 Peptide Sustained-Release Hydrogel Inhibits Osteoclast Formation and Promotes Vascularization to Promote Bone Regeneration in a Rat Femoral Defect Model. Bioengineering & Translational Medicine, 8, E10414. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Xie, C., Satake-Ozawa, M., Rashed, F., Khan, M., Ikeda, M., Hayashi, S., Sawada, S., Sasaki, Y., Ikeda, T., Mori, Y., Akiyoshi, K. and Aoki, K. (2022) Perforated Hydrogels Consisting of Cholesterol-Bearing Pullulan (CHP) Nanogels: A Newly Designed Scaffold for Bone Regeneration Induced by RANKL-Binding Peptides and BMP-2. International Journal of Molecular Sciences, 23, Article No. 7768. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Aoki, K., Saito, H., Itzstein, C., Ishiguro, M., Shibata, T., Blanque, R., Mian, A.H., Takahashi, M., Suzuki, Y., Yoshimatsu, M., Yamaguchi, A., Deprez, P., Mollat, P., Murali, R., Ohya, K., Horne, W.C. and Baron, R. (2006) A TNF Receptor Loop Peptide Mimic Blocks RANK Ligand-Induced Signaling, Bone Resorption, and Bone Loss. Journal of Clinical Investigation, 116, 1525-1534. [Google Scholar] [CrossRef]
|
|
[56]
|
Rashed, F., Kamijyo, S., Shimizu, Y., Hirohashi, Y., Khan, M., Sugamori, Y., Murali, R. and Aoki, K. (2021) The Effects of Receptor Activator of NF-κB Ligand-Binding Peptides on Bone Resorption and Bone Formation. Frontiers in Cell and Developmental Biology, 9, Article ID: 648084. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Li, Y., Zhang, J., Chen, L., Li, H. and Wang, J. (2023) Repair of Critical-Sized Rat Cranial Defects with RADA16-W9 Self-Assembled Peptide Hydrogel. Biochemical and Biophysical Research Communications, 652, 68-75. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Furuya, Y., Inagaki, A., Khan, M., Mori, K., Penninger, J.M., Nakamura, M., Udagawa, N., Aoki, K., Ohya, K., Uchida, K. and Yasuda, H. (2013) Stimulation of Bone Formation in Cortical Bone of Mice Treated with a Receptor Activator of Nuclear Factor-κB Ligand (RANKL)-Binding Peptide That Possesses Osteoclastogenesis Inhibitory Activity. Journal of Biological Chemistry, 288, 5562-5571. [Google Scholar] [CrossRef]
|
|
[59]
|
Ma, S., Wang, C., Dong, Y., Jing, W., Wei, P., Peng, C., Liu, Z., Zhao, B. and Wang, Y. (2022) Microsphere-Gel Composite System with Mesenchymal Stem Cell Recruitment, Antibacterial, and Immunomodulatory Properties Promote Bone Regeneration via Sequential Release of LL37 and W9 Peptides. ACS Applied Materials & Interfaces, 14, 38525-38540. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Ornitz, D.M. and Marie, P.J. (2015) Fibroblast Growth Factor Signaling in Skeletal Development and Disease. Genes & Development, 29, 1463-1486. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Presta, M., Dell’Era, P., Mitola, S., Moroni, E., Ronca, R. and Rusnati, M. (2005) Fibroblast Growth Factor/Fibroblast Growth Factor Receptor System in Angiogenesis. Cytokine & Growth Factor Reviews, 16, 159-178. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Lee, J.-Y., Choo, J.-E., Choi, Y.-S., et al. (2010) Characterization of the Surface Immobilized Synthetic Heparin Binding Domain Derived from Human Fibroblast Growth Factor-2 and Its Effect on Osteoblast Differentiation. Journal of Biomedical Materials Research Part A, 83, 970-979.
|