|
[1]
|
Feigin, V., Lawes, C., Bennett, D., et al. (2009) Worldwide Stroke Incidence and Early Case Fatality Reported in 56 Population-Based Studies: A Systematic Review. The Lancet Neurology, 8, 355-369. [Google Scholar] [CrossRef]
|
|
[2]
|
Van, G.J. and Rinkel, G. (2001) Subarachnoid Haemorrhage: Diagnosis, Causes and Management. Brain, 124, 249-278. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Virani, S.S., Alonso, A., Aparicio, H.J., et al. (2021) Heart Disease and Stroke Statistics—2021 Update: A Report from the American Heart Association. Circulation, 143, e254-e743. [Google Scholar] [CrossRef]
|
|
[4]
|
Buunk, A.M., Spikman, J.M., Metzemaekers, J., et al. (2019) Return to Work after Subarachnoid Hemorrhage: The Influence of Cognitive Deficits. PLOS ONE, 14, e0220972. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Turi, E.R., Conley, Y., Crago, E., et al. (2019) Psychosocial Comorbidities Related to Return to Work Rates Following Aneurysmal Subarachnoid Hemorrhage. Journal of Occupational Rehabilitation, 29, 205-211. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Lublinsky, S., Major, S., Kola, V., et al. (2019) Early Blood-Brain Barrier Dysfunction Predicts Neurological Outcome Following Aneurysmal Subarachnoid Hemorrhage. EBioMedicine, 43, 460-472. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Geraghty, J.R., Davis, J.L. and Testai, F.D. (2019) Neuroinflammation and Microvascular Dysfunction after Experimental Subarachnoid Hemorrhage: Emerging Components of Early Brain Injury Related to Outcome. Neurocritical Care, 31, 373-389. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Savarraj, J., Parsha, K., Hergenroeder, G., Ahn, S., Chang, T.R., Kim, D.H. and Choi, H.A. (2018) Early Brain Injury Associated with Systemic Inflammation after Subarachnoid Hemorrhage. Neurocritical Care, 28, 203-211. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Jaja, B.N.R., Cusimano, M.D., Etminan, N, et al. (2013) Clinical Prediction Models for Aneurysmal Subarachnoid Hemorrhage: A Systematic Review. Neurocritical Care, 18, 143-153. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Fang, Y., Mei, S., Lu, J., et al. (2019) New Risk Score of the Early Period after Spontaneous Subarachnoid Hemorrhage: For the Prediction of Delayed Cerebral Ischemia. CNS Neuroence & Therapeutics, 25, 1173-1181. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Fisher, C.M., Kistler, J.P. and Davis, J.M. (1980) Relation of Cerebral Vasospasm to Subarachnoid Hemorrhage Visualized by Computerized Tomographic Scanning. Neurosurgery, 6, 1-9. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Frontera, J.A., Claassen, J., Schmidt, J.M., et al. (2006) Prediction of Symptomatic Vasospasm after Subarachnoid Hemorrhage: The Modified Fisher Scale. Neurosurgery, 59, 21-27. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Geraghty, J.R., Lara-Angulo, M.N., Spegar, M., et al. (2020) Severe Cognitive Impairment in Aneurysmal Subarachnoid Hemorrhage: Predictors and Relationship to Functional Outcome. Journal of Stroke and Cerebrovascular Diseases, 29, Article 105027. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
赵康丽, 李国锋, 李豪杰. 颅内动脉瘤性蛛网膜下腔出血后认知障碍的影响因素分析[J]. 航空航天医学杂志, 2021, 32(10): 1194-1196.
|
|
[15]
|
Bonares, M.J., Egeto, P., de Oliveira Manoel, A.L., et al. (2016) Unruptured Intracranial Aneurysm Treatment Effects on Cognitive Function: A Meta-Analysis. Journal of Neurosurgery JNS, 124, 784-790. [Google Scholar] [CrossRef]
|
|
[16]
|
Macdonald, R.L., Kassell, N.F., Mayer, S., et al. (2008) Clazosentan to Overcome Neurological Ischemia and Infarction Occurring after Subarachnoid Hemorrhage (CONSCIOUS-1): Randomized, Double-Blind, Placebo-Controlled Phase 2 Dose-Finding Trial. Stroke, 39, 3015-3021. [Google Scholar] [CrossRef]
|
|
[17]
|
Vergouwen, M., Vermeulen, M., Gijn, J.V., et al. (2010) Definition of Delayed Cerebral Ischemia after Aneurysmal Subarachnoid Hemorrhage as an Outcome Event in Clinical Trials and Observational Studies: Proposal of a Multidisciplinary Research Group. Stroke, 41, 2391-2395. [Google Scholar] [CrossRef]
|
|
[18]
|
Suarez, J.I., Tarr, R.W. and Selman, W.R. (2006) Aneurysmal Subarachnoid Hemorrhage. The New England Journal of Medicine, 354, 387-396. [Google Scholar] [CrossRef]
|
|
[19]
|
Ahn, S.H., Savarraj, J.P., Pervez, M., et al. (2018) The Subarachnoid Hemorrhage Early Brain Edema Score Predicts Delayed Cerebral Ischemia and Clinical Outcomes. Neurosurgery, 83, 137-145. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Suzuki, H., Kanamaru, H., Kawakita, F., et al. (2021) Cerebrovascular Pathophysiology of Delayed Cerebral Ischemia after Aneurysmal Subarachnoid Hemorrhage. Histology and Histopathology, 36, 143-158. [Google Scholar] [CrossRef]
|
|
[21]
|
Vergouwen, M.D., Vermeulen, M., van Gijn, J., Rinkel ,G.J., Wijdicks, E.F., Muizelaar, J.P., Mendelow, A.D., Juvela, S., Yonas, H., Terbrugge, K.G., Macdonald, R.L., Diringer, M.N., Broderick, J.P., Dreier, J.P. and Roos, Y.B. (2010) Definition of Delayed Cerebral Ischemia after Aneurysmal Subarachnoid Hemorrhage as an Outcome Event in Clinical Trials and Observational Studies: Proposal of a Multidisciplinary Research Group. Stroke, 41, 2391-2395. [Google Scholar] [CrossRef]
|
|
[22]
|
Stienen, M.N., Smoll, N.R., Weisshaupt, R., et al. (2014) Delayed Cerebral Ischemia Predicts Neurocognitive Impairment Following Aneurysmal Subarachnoid Hemorrhage. World Neurosurgery, 82, e599-e605. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Stienen, M.N., Germans, M.R., Zindel-Geisseler, O., et al. (2022) Longitudinal Neuropsychological Assessment after Aneurysmal Subarachnoid Hemorrhage and Its Relationship with Delayed Cerebral Ischemia: A Prospective Swiss Multicenter Study. Journal of Neurosurgery, 137, 1742-1750. [Google Scholar] [CrossRef]
|
|
[24]
|
Shen, Y., Dong, Z.F., Pan, P., et al. (2018) Risk Factors for Mild Cognitive Impairment in Patients with Aneurysmal Subarachnoid Hemorrhage Treated with Endovascular Coiling. World Neurosurgery, 119, e527-e533. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Wong, G., Wong, R., Mok, V., et al. (2009) Clinical Study on Cognitive Dysfunction after Spontaneous Subarachnoid Haemorrhage: Patient Profiles and Relationship to Cholinergic Dysfunction. Acta Neurochirurgica, 151, 1601-1607. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Bakar, E.E. and Bakar, B. (2010) Neuropsychological Assessment of Adult Patients with Shunted Hydrocephalus. Journal of Korean Neurosurgical Society, 47, 191-198. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Hütter, B.-O. and Gilsbach, J.-M. (2017) Short-and Long-Term Neurobehavioral Effects of Lumbar Puncture and Shunting in Patients with Malabsorptive Hydrocephalus after Subarachnoid Haemorrhage: An Explorative Case Study. Journal of Clinical Neuroscience, 36, 88-93. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Di Russo, P., Di Carlo, D.T., Lutenberg, A., Morganti, R., Evins, A.I. and Perrini, P. (2020) Shunt-Dependent Hydrocephalus after Aneurysmal Subarachnoid Hemorrhage. Journal of Neurosurgical Sciences, 64, 181-189. [Google Scholar] [CrossRef]
|
|
[29]
|
Inoue, T., Shimizu, H., Fujimura, M., et al. (2015) Risk Factors for Meningitis after Craniotomy in Patients with Subarachnoid Hemorrhage Due to Anterior Circulation Aneurysms Rupture. Clinical Neurology and Neurosurgery, 139, 302-306. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Li, H., Pan, R., Wang, H., et al. (2013) Clipping versus Coiling for Ruptured Intracranial Aneurysms: A Systematic Review and Meta-Analysis. Stroke, 44, 29-37. [Google Scholar] [CrossRef]
|
|
[31]
|
Molyneux, A., Kerr, R.,Yu, L.-Y., et al., International Subarachnoid Aneurysm Trial (ISAT) Collaborative Group (2005) International Subarachnoid Aneurysm Trial (ISAT) of Neurosurgical Clipping versus Endovascular Coiling in 2143 Patients with Ruptured Intracranial Aneurysms: A Randomised Trial. ACC Current Journal Review, 14, 1267-1274. [Google Scholar] [CrossRef]
|
|
[32]
|
Egeto, P., Macdonald, R.L., Ornstein T.J., et al. (2017) Neuropsychological Function after Endovascular and Neurosurgical Treatment of Subarachnoid Hemorrhage: A Systematic Review and Meta-Analysis. Journal of Neurosurgery, 128, 768-776. [Google Scholar] [CrossRef]
|
|
[33]
|
俞学斌, 金国良, 黄春敏, 等. 动脉瘤性蛛网膜下腔出血患者开颅夹闭术与介入栓塞术后认知功能的对比研究[J]. 临床神经外科杂志, 2020, 17(1): 86-89.
|
|
[34]
|
Frazer, D., Ahuja, A., Watkins, L., et al. (2007) Coiling versus Clipping for the Treatment of Aneurysmal Subarachnoid Hemorrhage: A Longitudinal Investigation into Cognitive Outcome. Neurosurgery, 60, 434-442. [Google Scholar] [CrossRef]
|
|
[35]
|
俞学斌, 金国良, 黄春敏, 等. 动脉瘤性蛛网膜下腔出血后发生认知障碍危险因素分析[J]. 浙江医学, 2019, 41(18): 4.
|
|
[36]
|
Pradilla, G., Chaichana, K.L., Hoang, S., et al. (2010) Inflammation and Cerebral Vasospasm after Subarachnoid Hemorrhage. Neurosurgery Clinics of North America, 21, 365-379. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Gallia, G.L. and Tamargo, R.J. (2006) Leukocyte-Endothelial Cell Interactions in Chronic Vasospasm after Subarachnoid Hemorrhage. Neurological Research, 28, 750-758. [Google Scholar] [CrossRef]
|
|
[38]
|
Scheller, J., Chalaris, A., Schmidt-Arras, D., et al. (2011) The Pro-and Anti-Inflammatory Properties of the Cytokine Interleukin-6. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1813, 878-888. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Chen, A., Oakley, A.E., Monteiro, M., et al. (2016) Multiplex Analyte Assays to Characterize Different Dementias: Brain Inflammatory Cytokines in Poststroke and Other Dementias. Neurobiology of Aging, 38, 56-67. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Kulesh, A., Drobakha, V., Kuklina, E., et al. (2018) Cytokine Response, Tract-Specific Fractional Anisotropy, and Brain Morphometry in Post-Stroke Cognitive Impairment. Journal of Stroke and Cerebrovascular Diseases, 27, 1752-1759. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Guo, J., Su, W., Fang, J., et al. (2018) Elevated CRP at Admission Predicts Post-Stroke Cognitive Impairment in Han Chinese Patients with Intracranial Arterial Stenosis. Neurological Research, 40, 292-296. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Li, J., Li, X.Y., Feng, D.F., et al. (2010) Biomarkers Associated with Diffuse Traumatic Axonal Injury: Exploring Pathogenesis, Early Diagnosis, and Prognosis. Journal of Trauma and Acute Care Surgery, 69, 1610-1618. [Google Scholar] [CrossRef]
|
|
[43]
|
Teunissen, C.E., Dijkstra, C. and Polman, C. (2005) Biological Markers in CSF and Blood for Axonal Degeneration in Multiple Sclerosis. The Lancet Neurology, 4, 32-41. [Google Scholar] [CrossRef]
|
|
[44]
|
Helbok, R., Schiefecker, A., Delazer, M., et al. (2015) Cerebral Tau Is Elevated after Aneurysmal Subarachnoid Haemorrhage and Associated with Brain Metabolic Distress and Poor Functional and Cognitive Long-Term Outcome. Journal of Neurology, Neurosurgery & Psychiatry, 86, 79-86. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Xiong, X.Y., Liu, L. and Yang, Q.W. (2016) Functions and Mechanisms of Microglia/Macrophages in Neuroinflammation and Neurogenesis after Stroke. Progress in Neurobiology, 142, 23-44. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Huang, X.P., Peng, J.H., Pang, J.W., et al. (2017) Peli1 Contributions in Microglial Activation, Neuroinflammatory Responses and Neurological Deficits Following Experimental Subarachnoid Hemorrhage. Frontiers in Molecular Neuroscience, 10, Article 398. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Cai, W., Liu, S., Hu, M., et al. (2018) Post-Stroke DHA Treatment Protects Against Acute Ischemic Brain Injury by Skewing Macrophage Polarity toward the M2 Phenotype. Translational Stroke Research, 9, 669-680. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Xu, W., Mo, J., Ocak, U., et al. (2020) Activation of Melanocortin 1 Receptor Attenuates Early Brain Injury in a Rat Model of Subarachnoid Hemorrhage Viathe Suppression of Neuroinflammation through AMPK/TBK1/NF-κB Pathway in Rats. Neurotherapeutics, 17, 294-308. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Tao, K., Cai, Q., Zhang, X., et al. (2020) Astrocytic Histone Deacetylase 2 Facilitates Delayed Depression and Memory Impairment after Subarachnoid Hemorrhage by Negatively Regulating Glutamate Transporter-1. Annals of Translational Medicine, 8, Article 691. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Galluzzi, L., Pietrocola, F., Levine, B., et al. (2014) Metabolic Control of Autophagy. Cell, 159, 1263-1276. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Wang, Z.Y., Zhou, L.Q., Zheng, X.T., et al. (2018) Effects of Dexamethasone on Autophagy and Apoptosis in Acute Spinal Cord Injury. NeuroReport, 29, 1084-1091. [Google Scholar] [CrossRef]
|
|
[52]
|
Stankiewicz, T.R. and Linseman, D.A. (2014) Rho Family GTPases: Key Players in Neuronal Development, Neuronal Survival, and Neurodegeneration. Frontiers in Cellular Neuroscience, 8, Article 314. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Lee, J.Y., He, Y., Sagher, O., et al. (2009) Activated Autophagy Pathway in Experimental Subarachnoid Hemorrhage. Brain Research, 1287, 126-135. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Wang, Z., Shi, X.Y., Yin, J., et al. (2012) Role of Autophagy in Early Brain Injury after Experimental Subarachnoid Hemorrhage. Journal of Molecular Neuroscience, 46, 192-202. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Su, L., Ma, Y., Zhang, Z., et al. (2018) ROCK2 Regulates Autophagy in the Hippocampus of Rats after Subarachnoid Hemorrhage. NeuroReport, 29, 1571-1577. [Google Scholar] [CrossRef]
|
|
[56]
|
Gomes, J.A., Selim, M., Cotleur, A., et al. (2014) Brain Iron Metabolism and Brain Injury Following Subarachnoid Hemorrhage: iCeFISH-Pilot (CSF Iron in SAH). Neurocritical Care, 21, 285-293. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Qin, Y., Li, G., Sun, Z., et al. (2019) Comparison of the Effects of Nimodipine and Deferoxamine on Brain Injury in Rat with Subarachnoid Hemorrhage. Behavioural Brain Research, 367, 194-200. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Nasreddine, Z.S., Phillips, N.A., Bédirian, V., et al. (2005) The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool for Mild Cognitive Impairment. Journal of the American Geriatrics Society, 53, 695-699. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
孙跃岐, 吕春梅, 朱江华, 等. 蒙特利尔认知量表在健康体检老年人群中的应用[J]. 中国老年保健医学, 2018, 16(6): 12-13.
|
|
[60]
|
Wong, G.K.C., Lam, S.W., Wong, A., et al. (2013) Comparison of Montreal Cognitive Assessment and Mini-Mental State Examination in Evaluating Cognitive Domain Deficit Following Aneurysmal Subarachnoid Haemorrhage. PLOS ONE, 8, e59946. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
成明强, 游咏, 唐细容, 等. 比较MoCA和MMSE在卒中后认知功能筛查中的应用[J]. 现代生物医学进展, 2011, 11(24): 4883-4885.
|
|
[62]
|
Fujiwara, Y., Suzuki, H., Yasunaga, M., et al. (2010) Brief Screening Tool for Mild Cognitive Impairment in Older Japanese: Validation of the Japanese Version of the Montreal Cognitive Assessment. Geriatrics & Gerontology International, 10, 225-232. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Wong, G.K.C., Lam, S.W., Wong, A., et al. (2014) Early MoCA-Assessed Cognitive Impairment after Aneurysmal Subarachnoid Hemorrhage and Relationship to 1-Year Functional Outcome. Translational Stroke Research, 5, 286-291. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Schweizer, T.A., Al-Khindi, T. and Macdonald, R.L. (2012) Mini-Mental State Examination versus Montreal Cognitive Assessment: Rapid Assessment Tools for Cognitive and Functional Outcome after Aneurysmal Subarachnoid Hemorrhage. Journal of the Neurological Sciences, 316, 137-140. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Karic, T., Røe, C., Nordenmark, T.H., et al. (2017) Effect of Early Mobilization and Rehabilitation on Complications in Aneurysmal Subarachnoid Hemorrhage. Journal of Neurosurgery, 126, 518-526. [Google Scholar] [CrossRef]
|
|
[66]
|
Okamura, M., Konishi, M., Sagara, A., et al. (2021) Impact of Early Mobilization on Discharge Disposition and Functional Status in Patients with Subarachnoid Hemorrhage: A Retrospective Cohort Study. Medicine, 100, e28171. [Google Scholar] [CrossRef]
|
|
[67]
|
Shukla, D.P. (2017) Outcome and Rehabilitation of Patients Following Aneurysmal Subarachnoid Haemorrhage. Journal of Neuroanaesthesiology and Critical Care, 4, S65-S75. [Google Scholar] [CrossRef]
|
|
[68]
|
Milovanovic, A., Grujicic, D., Bogosavljevic, V., et al. (2017) Efficacy of Early Rehabilitation after Surgical Repair of Acute Aneurysmal Subarachnoid Hemorrhage: Outcomes after Verticalization on Days 2-5 versus Day 12 Post-Bleeding. Turkish Neurosurgery, 27, 867-873. [Google Scholar] [CrossRef]
|
|
[69]
|
Hebert, D., Lindsay, M.P., McIntyre, A., et al. (2016) Canadian Stroke Best Practice Recommendations: Stroke Rehabilitation Practice Guidelines, Update 2015. International Journal of Stroke, 11, 459-484. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Langhorne, P., Bernhardt, J. and Kwakkel, G. (2011) Stroke Rehabilitation. The Lancet, 377, 1693-1702. [Google Scholar] [CrossRef]
|
|
[71]
|
Hadanny, A. and Efrati, S. (2016) The Efficacy and Safety of Hyperbaric Oxygen Therapy in Traumatic Brain Injury. Expert Review of Neurotherapeutics, 16, 359-360. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Hadanny, A., Rittblat, M., Bitterman, M., et al. (2020) Hyperbaric Oxygen Therapy Improves Neurocognitive Functions of Post-Stroke Patients—A Retrospective Analysis. Restorative Neurology and Neuroscience, 38, 93-107. [Google Scholar] [CrossRef]
|
|
[73]
|
Robbins, T.W. and Arnsten, A.F.T. (2009) The Neuropsychopharmacology of Fronto-Executive Function: Monoaminergic Modulation. Annual Review of Neuroscience, 32, 267-287. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Román, G.C. and Kalaria, R.N. (2006) Vascular Determinants of Cholinergic Deficits in Alzheimer Disease and Vascular Dementia. Neurobiology of Aging, 27, 1769-1785. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Leijenaar, J.F., Groeneveld, G.J., Klaassen, E.S., et al. (2020) Methylphenidate and Galantamine in Patients with Vascular Cognitive Impairment—The Proof-of-Principle Study STREAM-VCI. Alzheimer’s Research & Therapy, 12, Article No. 10. [Google Scholar] [CrossRef] [PubMed]
|