|
[1]
|
Opescu, N.I., Lupu, C. and Lupu, F. (2022) Disseminated Intravascular Coagulation and Its Immune Mechanisms. Blood, 139, 1973-1986. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Giustozzi, M., Ehrlinder, H., Bongiovanni, D., et al. (2021) Coagulopathy and Sepsis: Pathophysiology, Clinical Manifestations and Treatment. Blood Reviews, 50, Article ID: 100864. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Joffre, J., Hellman, J., Ince, C. and Ait-Oufella, H. (2020) Endothelial Responses in Sepsis. American Journal of Respiratory and Critical Care Medicine, 202, 361-370. [Google Scholar] [CrossRef]
|
|
[4]
|
Thachil, J. (2021) Why Do Patients with DIC Bleed. Journal of Thrombosis and Haemostasis, 19, 2630-2631. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
宋景春, 张伟, 张磊, 等. 重症患者凝血功能障碍标准化评估中国专家共识[J]. 解放军医学杂志, 2022, 47(2): 107-117.
|
|
[6]
|
Iba, T., Connors, J.M., Nagaoka, I. and Levy, J.H. (2021) Recent Advances in the Research and Management of Sep-Sis-Associated DIC. International Journal of Hematology, 113, 24-33. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Iba, T., Levy, J.H., Warkentin, T.E., Thachil, J., Van Der Poll, T. and Levi, M. (2019) Diagnosis and Management of Sep-Sis-Induced Coagulopathy and Disseminated Intravascular Coagulation. Journal of Thrombosis and Haemostasis, 17, 1989-1994. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Yamakawa, K., Yoshimura, J., Ito, T., Hayakawa, M., Hamasaki, T. and Fujimi, S. (2019) External Validation of the Two Newly Proposed Criteria for Assessing Coagulopathy in Sepsis. Thrombosis and Haemostasis, 119, 203-212. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
中华医学会血液学分会血栓与止血学组. 弥散性血管内凝血诊断中国专家共识(2017年版) [J]. 中华血液学杂志, 2017, 38(5): 361-363.
|
|
[10]
|
Cosgun, Z.C., Fels, B. and Kusche-Vihrog, K. (2020) Nanomechanics of the Endothelial Glycocalyx: From Structure to Function. The American Journal of Pathology, 190, 732-741. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Fels, J., Jeggle, P., Liashkovich, I., Peters, W. and Oberleithner, H. (2014) Nanomechanics of Vascular Endothelium. Cell and Tissue Research, 355, 727-737. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Xu, S., Ilyas, I., Little, P.J., et al. (2021) Endothelial Dysfunction in Atherosclerotic Cardiovascular Diseases and Beyond: From Mechanism to Pharmacotherapies. Pharmacological Reviews, 73, 924-967. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Foote, C.A., Soares, R.N., Ramirez-Perez, F.I., et al. (2022) Endothelial Glycocalyx. Comprehensive Physiology, 12, 3781-3811. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Peng, N., Geng, Y., Ouyang, J., et al. (2023) Endothelial Glycocalyx Injury Is Involved in Heatstroke-Associated Coagulopa-Thy and Protected by N-Acetylcysteine. Frontiers in Immunology, 14, Article 1159195. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Woodcock, T.E. and Woodcock, T.M. (2012) Revised Starling Equation and the Glycocalyx Model of Transvascular Fluid Exchange: An Improved Paradigm for Prescribing Intravenous Fluid Therapy. British Journal of Anaesthesia, 108, 384-394. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Milford, E.M. and Reade, M.C. (2019) Resuscitation Fluid Choices to Preserve the Endothelial Glycocalyx. Critical Care, 23, Article No. 77. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Qu, J., Cheng, Y., Wu, W., Yuan, L. and Liu, X. (2021) Glycocalyx Impairment in Vascular Disease: Focus on Inflammation. Frontiers in Cell and Developmental Biology, 9, Article 730621. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
陈铭铭, 马晓春. 脓毒症与内皮细胞损伤: 多糖包被的作用值得关注[J]. 中华内科杂志, 2020, 59(6): 418-420.
|
|
[19]
|
Fels, B. and Kusche-Vihrog, K. (2020) It Takes More Than Two to Tango: Mechanosignaling of the Endothelial Surface. Pflu-GersArchiv: European Journal of Physiology, 472, 419-433. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
宋景春. 脓毒症合并弥散性血管内凝血的机制与监测[J]. 医学研究生学报, 2017, 30(7): 703-708.
|
|
[21]
|
Iba, T. and Levy, J.H. (2018) Inflammation and Thrombosis: Roles of Neutrophils, Platelets and Endothelial Cells and Their Interactions in Thrombus Formation during Sepsis. Journal of Thrombosis and Haemostasis: JTH, 16, 231-241. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Iba, T., Levy, J.H., Raj, A. and Warkentin, T.E. (2019) Advance in the Management of Sepsis-Induced Coagulopathy and Disseminated Intravascular Coagulation. Journal of Clinical Medicine, 8, Article 728. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
李旭, 马晓春. 严重感染出凝血障碍的认识和处理[J]. 中国实用内科杂志, 2021, 41(6): 466-469, 474.
|
|
[24]
|
茅敏, 李秀, 王子丹, 单亮. 血小板及其表面受体配体在脓毒症凝血病中作用的研究进展[J]. 中华临床医师杂志(电子版), 2021, 15(4): 302-307.
|
|
[25]
|
宋景春. 脓毒症性凝血功能紊乱的精准识别[J]. 中华检验医学杂志, 2023, 46(10): 987-991.
|
|
[26]
|
Carestia, A., Davis, R.P., Davis, L. and Jenne, C.N. (2020) Inhibition of Immunothrombosis Does Not Affect Pathogen Capture and Does Not Promote Bacterial Dissemination in a Mouse Model of Sepsis. Platelets, 31, 925-931. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Gaertner, F. and Massberg, S. (2019) Patrolling the Vascular Borders: Platelets in Immunity to Infection and Cancer. Nature Reviews Immunology, 19, 747-760. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Levi, M., Scully, M. and Singer, M. (2018) The Role of ADAMTS-13 in the Coagulopathy of Sepsis. Journal of Thrombosis and Haemostasis: JTH, 16, 646-651. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
马瑞爽. 内皮细胞吞噬激活血小板改善脓毒症凝血紊乱[D]: [博士学位论文]. 哈尔滨: 哈尔滨医科大学, 2021.
|
|
[30]
|
Evans, L., Rhodes, A., Alhazzani, W., et al. (2021) Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Intensive Care Medicine, 47, 1181-1247. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
王仲, 魏捷, 朱华栋, 曹钰. 中国脓毒症早期预防与阻断急诊专家共识[J]. 中国急救医学, 2020, 40(7): 577-588.
|
|
[32]
|
Watanabe, E., Akamatsu, T., Ohmori, M., et al. (2022) Recombinant Thrombomodulin Attenuates Hyper-Inflammation and Glycocalyx Damage in a Murine Model of Streptococcus Pneumoniae-Induced Sepsis. Cytokine, 149, Article ID: 155723. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Watanabe-Kusunoki, K., Nakazawa, D., Ishizu, A. and Atsumi, T. (2020) Thrombomodulin as a Physiological Modulator of Intravascular Injury. Frontiers in Immunology, 11, Article 575890. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Spiess, B.D. (2017) Heparin: Effects upon the Glycocalyx and Endothelial Cells. The Journal of Extra-Corporeal Technology, 49, 192-197. [Google Scholar] [CrossRef]
|
|
[35]
|
Iba, T., Levy, J.H., Aihara, K., et al. (2020) Newly Developed Recombinant Antithrombin Protects the Endothelial Glycocalyx in an Endotoxin-Induced Rat Model of Sepsis. International Journal of Molecular Sciences, 22, Article 176. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Kudo, D., Goto, T., Uchimido, R., et al. (2021) Coagulation Phenotypes in Sepsis and Effects of Recombinant Human Throm-Bomodulin: An Analysis of Three Multicentre Observational Studies. Critical Care, 25, Article No. 114. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Cai, D., Greco, M., Wu, Q. and Cheng, Y. (2023) Sepsis-Induced Coagulopathy Subphenotype Identification by Latent Class Analysis. Balkan Medical Journal, 40, 244-251. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Yamakawa, K., Umemura, Y., Murao, S., Hayakawa, M. and Fujimi, S. (2019) Optimal Timing and Early Intervention with Anticoagulant Therapy for Sepsis-Induced Disseminated Intravascular Coagulation. Clinical and Applied Thrombosis/Hemostasis, 25. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Suzuki, K., Wada, H., Matsumoto, T., et al. (2019) Usefulness of the APTT Waveform for the Diagnosis of DIC and Prediction of the Outcome or Bleeding Risk. Thrombosis Journal, 17, Article No. 12. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Lupu, F., Kinasewitz, G. and Dormer, K. (2020) The Role of Endothelial Shear Stress on Haemodynamics, Inflammation, Coagulation and Glycocalyx during Sepsis. Journal of Cellular and Molecular Medicine, 24, 12258-12271. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Vasques, F., Duscio, E., Romitti, F., et al. (2018) Septic Shock-3 Vs 2: An Analysis of the ALBIOS Study. Critical Care, 22, Article No. 237. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Geng, L., Tian, X., Gao, Z., Mao, A., Feng, L. and He, C. (2023) Different Concentrations of Albumin Versus Crystalloid in Patients with Sepsis and Septic Shock: A Meta-Analysis of Randomized Clinical Trials. Journal of Intensive Care Medicine, 38, 679-689. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Joffre, J., Lloyd, E., Wong, E., et al. (2021) Catecholaminergic Vasopressors Reduce Toll-Like Receptor Agonist-Induced Microvascular Endothelial Cell Permeability but Not Cytokine Production. Critical Care Medicine, 49, e315-e326. [Google Scholar] [CrossRef]
|
|
[44]
|
Deniau, B., Takagi, K., Asakage, A. and Mebazaa, A. (2021) Adrecizumab: An Investigational Agent for the Biomarker-Guided Treatment of Sepsis. Expert Opinion on Investigational Drugs, 30, 95-102. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
罗红敏. 肾上腺髓质素非中和抗体治疗脓毒症的安全性和耐受性研究[J]. 中华危重病急救医学, 2021, 33(12): 1536.
|
|
[46]
|
Abelli, J., Méndez-Valdés, G., Gómez-Hevia, F., et al. (2022) Potential Antioxidant Multitherapy against Complications Occurring in Sepsis. Biomedicines, 10, Article 3088. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Koekkoek, W.A. and Van Zanten, A.R. (2016) Antioxidant Vitamins and Trace Elements in Critical Illness. Nutrition in Clinical Practice, 31, 457-474. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Angstwurm, M.W., Engelmann, L., Zimmermann, T., et al. (2007) Selenium in Intensive Care (SIC): Results of a Prospective Randomized, Placebo-Controlled, Multiple-Center Study in Patients with Severe Systemic Inflammatory Response Syndrome, Sepsis, and Septic Shock. Critical Care Medicine, 35, 118-126. [Google Scholar] [CrossRef]
|
|
[49]
|
Carcillo, J.A., Berg, R.A., Wessel, D., et al. (2019) A Multicenter Network Assessment of Three Inflammation Phenotypes in Pediatric Sepsis-Induced Multiple Organ Failure. Pediatric Critical Care Medicine, 20, 1137-1146. [Google Scholar] [CrossRef]
|
|
[50]
|
Stahl, K., Wand, P., Seeliger, B., et al. (2022) Clinical and Biochemical Endpoints and Predictors of Response to Plasma Exchange in Septic Shock: Results from a Randomized Controlled Trial. Critical Care, 26, Article No. 134. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Weng, J., Chen, M., Fang, D., Liu, D., Guo, R. and Yang, S. (2021) Therapeutic Plasma Exchange Protects Patients with Sepsis-Associated Disseminated Intravascular Coagulation by Improving Endothelial Function. Clinical and Applied Thrombosis/Hemostasis, 27. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Keith, P.D., Wells, A.H., Hodges, J., Fast, S.H., Adams, A. and Scott, L.K. (2020) The Therapeutic Efficacy of Adjunct Therapeutic Plasma Exchange for Septic Shock with Multiple Organ Failure: A Single-Center Experience. Critical Care, 24, Article No. 518. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Joffe, A.R. and DeCaen, A. (2019) Not Enough Evidence to Use Plasma Exchange for Sepsis or Thrombocytopenia-Associated Multiple Organ Failure in Children. Critical Care Medicine, 47, e533-e534. [Google Scholar] [CrossRef]
|
|
[54]
|
David, S., Russell, L., Castro, P., et al. (2023) Research Priorities for Therapeutic Plasma Exchange in Critically Ill Patients. Intensive Care Medicine Experimental, 11, Article No. 26. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Liang, B., Yang, S.T., Wei, K.K., et al. (2022) Statin Use and Mortality among Patients Hospitalized with Sepsis: A Retrospective Cohort Study within Southern California, 2008-2018. Critical Care Research and Practice, 2022, Article ID: 7127531. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Richman, S., Lyman, C., Nesterova, A., et al. (2022) Old Drugs, New Tricks: Leveraging Known Compounds to Disrupt Coronavirus-Induced Cytokine Storm. NPJ Systems Biology and Applications, 8, Article No. 38. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
La Mura, V., Gagliano, N., Arnaboldi, F., et al. (2022) Simvastatin Prevents Liver Microthrombosis and Sepsis Induced Coagulopathy in a Rat Model of Endotoxemia. Cells, 11, Article 1148. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Ishikura, H., Nakamura, Y., Kawano, Y., et al. (2015) Intravenous Immunoglobulin Improves Sepsis-Induced Coagulopathy: A Retrospective, Single-Center Observational Study. Journal of Critical Care, 30, 579-583. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Vahldieck, C., Cianflone, E., Fels, B., et al. (2023) Endothelial Glycocalyx and Cardiomyocyte Damage Is Prevented by Recombinant Syndecan-1 in Acute Myocardial Infarction. The American Journal of Pathology, 193, 474-492. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Li, Z., Xu, Y., Lu, S., Gao, Y. and Deng, Y. (2023) Bone Mesenchymal Stem Cell Extracellular Vesicles Delivered MiR Let-7-5p Alleviate Endothelial Glycocalyx Degradation and Leakage via Targeting ABL2. Cell Communication and Signaling, 21, Article No. 205. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Augustin, H.G. and Koh, G.Y. (2017) Organotypic Vasculature: From Descriptive Heterogeneity to Functional Pathophysiology. Science, 357, eaal2379. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Yang, Q., Wijerathne, H., Langston, J.C., Kiani, M.F. and Kilpatrick, L.E. (2021) Emerging Approaches to Understanding Microvascular Endothelial Heterogeneity: A Roadmap for Developing Anti-Inflammatory Therapeutics. International Journal of Molecular Sciences, 22, Article 7770. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Maas, S.L., Soehnlein, O. and Viola, J.R. (2018) Organ-Specific Mechanisms of Transendothelial Neutrophil Migration in the Lung, Liver, Kidney, and Aorta. Frontiers in Immunology, 9, Article 2739. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Garofalo, A.M., Lorente-Ros, M., Goncalvez, G., et al. (2019) Histopathological Changes of Organ Dysfunction in Sepsis. Intensive Care Medicine Experimental, 7, Article No. 45. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Dayang, E.Z., Plantinga, J., Ter Ellen, B., Van Meurs, M., Molema, G. and Moser, J. (2019) Identification of LPS-Activated Endothelial Subpopulations with Distinct Inflammatory Phenotypes and Regulatory Signaling Mechanisms. Frontiers in Immunology, 10, Article 1169. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Leligdowicz, A., Chun, L.F., Jauregui, A., et al. (2018) Human Pulmonary Endothelial Cell Permeability after Exposure to LPS-Stimulated Leukocyte Supernatants Derived from Patients with Early Sepsis. American Journal of Physiology-Lung Cellular and Molecular Physiology, 315, L638-L644. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Clark, D.V., Banura, P., Bandeen-Roche, K., et al. (2019) Biomarkers of Endothelial Activation/Dysfunction Distinguish Sub-Groups of Ugandan Patients with Sepsis and Differing Mortality Risks. JCI Insight, 5, e127623. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Cleuren, A., Van Der Ent, M.A., Jiang, H., et al. (2019) The in Vivo Endothelial Cell Translatome Is Highly Heterogeneous across Vascular Beds. Proceedings of the National Academy of Sciences of the United States of America, 116, 23618-23624. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Van Der Ent, M.A., Svilar, D. and Cleuren, A. (2022) Molecular Analysis of Vascular Gene Expression. Research and Practice in Thrombosis and Haemostasis, 6, E12718. [Google Scholar] [CrossRef] [PubMed]
|