|
[1]
|
Matthay, M.A., Arabi, Y., Arroliga, A.C., et al. (2024) A New Global Definition of Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 209, 37-47. [Google Scholar] [CrossRef]
|
|
[2]
|
Meyer, N.J., Gattinoni, L. and Calfee, C.S. (2021) Acute Respiratory Distress Syndrome. The Lancet, 398, 622-637. [Google Scholar] [CrossRef]
|
|
[3]
|
Bellani, G., Laffey, J.G., Pham, T., et al. (2016) Epidemiology, Patterns of Care, and Mortality for Patients with Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA, 315, 788-800. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Bos, L.D.J. and Ware, L.B. (2022) Acute Respiratory Distress Syndrome: Causes, Pathophysiology, and Phenotypes. Lancet, 400, 1145-1156. [Google Scholar] [CrossRef]
|
|
[5]
|
McElvaney, O.J., Curley, G.F., Rose-John, S., et al. (2021) Interleukin-6: Obstacles to Targeting a Complex Cytokine in Critical Illness. The Lancet Respiratory Medicine, 9, 643-654. [Google Scholar] [CrossRef]
|
|
[6]
|
Meduri, G.U., Headley, S., Kohler, G., et al. (1995) Persistent Elevation of Inflammatory Cytokines Predicts a Poor Outcome in ARDS. Plasma IL-1 Beta and IL-6 Levels Are Consistent and Efficient Predictors of Outcome over Time. Chest, 107, 1062-1073. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Lin, W.C., Lin, C.F., Chen, C.L., et al. (2010) Prediction of Outcome in Patients with Acute Respiratory Distress Syndrome by Bronchoalveolar Lavage Inflammatory Mediators. Experimental Biology and Medicine, 235, 57-65. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Hirano, T., Yasukawa, K., Harada, H., et al. (1986) Complementary DNA for a Novel Human Interleukin (BSF-2) That Induces B Lymphocytes to Produce Immunoglobulin. Nature, 324, 73-76. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Akdis, M., Aab, A., Altunbulakli, C., et al. (2016) Interleukins (From IL-1 to IL-38), Interferons, Transforming Growth Factor β, and TNF-α: Receptors, Functions, and Roles in Diseases. The Journal of Allergy and Clinical Immunology, 138, 984-1010. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Jones, S.A. and Jenkins, B.J. (2018) Recent Insights into Targeting the IL-6 Cytokine Family in Inflammatory Diseases and Cancer. Nature Reviews Immunology, 18, 773-789. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Yu, H., Lee, H., Herrmann, A., et al. (2014) Revisiting STAT3 Signalling in Cancer: New and Unexpected Biological Functions. Nature Reviews Cancer, 14, 736-746. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Maggio M., Guralnik J.M., Longo D.L., et al (2006) Interleukin-6 in Aging and Chronic Disease: A Magnificent Pathway. The Journals of Gerontology: Series A, Biological Sciences and Medical Sciences, 61, 575-584. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Garbers, C., Kuck, F., Aparicio-Siegmund, S., et al. (2013) Cellular Senescence or EGFR Signaling Induces Interleukin 6 (IL-6) Receptor Expression Controlled by Mammalian Target of Rapamycin (MTOR). Cell Cycle, 12, 3421-3432. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Choy, E.H., De Benedetti, F., Takeuchi, T., et al. (2020) Translating IL-6 Biology into Effective Treatments. Nature Reviews Rheumatology, 16, 335-345. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Schmidt-Arras, D. and Rose-John, S. (2021) Endosomes as Signaling Platforms for IL-6 Family Cytokine Receptors. Frontiers in Cell and Developmental Biology, 9, Article 688314. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Rose-John, S., Jenkins, B.J., Garbers, C., et al. (2023) Targeting IL-6 Trans-Signalling: Past, Present and Future Prospects. Nature ReviewsImmunology, 23, 666-681. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Heinrich, P.C., Behrmann, I., Haan, S., et al. (2003) Principles of Interleukin (IL)-6-Type Cytokine Signalling and Its Regulation. The Biochemical Journal, 374, 1-20. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Heink, S., Yogev, N., Garbers, C., et al. (2016) Trans-Presentation of IL-6 by Dendritic Cells Is Required for the Priming of Pathogenic TH17 Cells. Nature Immunology, 18, 74-85. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Elahi, R., Karami, P., Heidary, A.H., et al. (2022) An Updated Overview of Recent Advances, Challenges, and Clinical Considerations of IL-6 Signaling Blockade in Severe Coronavirus Disease 2019 (COVID-19). International Immunopharmacology, 105, Article ID: 108536. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Saki, N., Javan, M., Moghimian-Boroujeni, B., et al. (2023) Interesting Effects of Interleukins and Immune Cells on Acute Respiratory Distress Syndrome. Clinical and Experimental Medicine, 23, 2979-2996. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Qin, M. and Qiu, Z. (2019) Changes in TNF-α, IL-6, IL-10 and VEGF in Rats with ARDS and the Effects of Dexamethasone. Experimental and Therapeutic Medicine, 17, 383-387. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Terpstra, M.L., Aman, J., van Nieuw Amerongen, G.P., et al. (2014) Plasma Biomarkers for Acute Respiratory Distress Syndrome: A Systematic Review and Meta-Analysis. Critical Care Medicine, 42, 691-700.
|
|
[23]
|
Swaroopa, D., Bhaskar, K., Mahathi, et al. (2016) Association of Serum Interleukin-6, Interleukin-8, and Acute Physiology and Chronic Health Evaluation II Score with Clinical Outcome in Patients with Acute Respiratory Distress Syndrome. Indian Journal of Critical Care Medicine, 20, 518-525. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Chen, X., Zhao, B., Qu, Y., et al. (2020) Detectable Serum Severe Acute Respiratory Syndrome Coronavirus 2 Viral Load (RNAemia) Is Closely Correlated with Drastically Elevated Interleukin 6 Level in Critically Ill Patients with Coronavirus Disease 2019. Clinical Infectious Diseases, 71, 1937-1942. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Herold, T., Jurinovic, V., Arnreich, C., et al. (2020) Elevated Levels of IL-6 and CRP Predict the Need for Mechanical Ventilation in COVID-19. The Journal of Allergy and Clinical Immunology, 146, 128-136.E4. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Famous, K.R., Delucchi, K., Ware, L.B., et al. (2017) Acute Respiratory Distress Syndrome Subphenotypes Respond Differently to Randomized Fluid Management Strategy. American Journal of Respiratory and Critical Care Medicine, 195, 331-338. [Google Scholar] [CrossRef]
|
|
[27]
|
Calfee, C.S., Delucchi, K.L., Sinha, P., et al. (2018) Acute Respiratory Distress Syndrome Subphenotypes and Differential Response to Simvastatin: Secondary Analysis of a Randomised Controlled Trial. The Lancet Respiratory Medicine, 6, 691-698.
|
|
[28]
|
Sinha, P., Furfaro, D., Cummings, M.J., et al. (2021) Latent Class Analysis Reveals COVID-19—Related Acute Respiratory Distress Syndrome Subgroups with Differential Responses to Corticosteroids. American Journal of Respiratory and Critical Care Medicine, 204, 1274-1285. [Google Scholar] [CrossRef]
|
|
[29]
|
Beitler, J.R., Thompson, B.T., Baron, R.M., et al. (2022) Advancing Precision Medicine for Acute Respiratory Distress Syndrome. The Lancet Respiratory Medicine, 10, 107-120. [Google Scholar] [CrossRef]
|
|
[30]
|
Recovery Collaborative Group (2021) Tocilizumab in Patients Admitted to Hospital with COVID-19 (RECOVERY): A Randomised, Controlled, Open-Label, Platform Trial. Lancet, 397, 1637-1645. [Google Scholar] [CrossRef]
|
|
[31]
|
Brunner, H.I., Ruperto, N., Zuber, Z., et al. (2015) Efficacy and Safety of Tocilizumab in Patients with Polyarticular-Course Juvenile Idiopathic Arthritis: Results from a Phase 3, Randomised, Double-Blind Withdrawal Trial. Annals of the Rheumatic Diseases, 74, 1110-1117. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Garbers, C., Heink, S., Korn, T., et al. (2018) Interleukin-6: Designing Specific Therapeutics for a Complex Cytokine. Nature Reviews Drug Discovery, 17, 395-412. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Aletaha, D., Kerschbaumer, A., Kastrati, K., et al. (2023) Consensus Statement on Blocking Interleukin-6 Receptor and Interleukin-6 in Inflammatory Conditions: An Update. Annals of the Rheumatic Diseases, 82, 773-787. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Sarıoğlu, N., Sunay, F.B., Yay, A., et al. (2021) Antiinflammatory Effects of Adalimumab, Tocilizumab, and Steroid on Lipopolysaccharide-Induced Lung Injury. Turkish Journal of Medical Sciences, 51, 2741-2751. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Boyce, E.G., Rogan, E.L., Vyas, D., et al. (2018) Sarilumab: Review of a Second IL-6 Receptor Antagonist Indicated for the Treatment of Rheumatoid Arthritis. The Annals of Pharmacotherapy, 52, 780-791. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Deisseroth, A., Ko, C.W., Nie, L., et al. (2015) FDA Approval: Siltuximab for the Treatment of Patients with Multicentric Castleman Disease. Clinical Cancer Research, 21, 950-954. [Google Scholar] [CrossRef]
|
|
[37]
|
Villaescusa, L., Zaragozá, F., Gayo-Abeleira, I., et al. (2022) A New Approach to the Management of COVID-19. Antagonists of IL-6: Siltuximab. Advances in Therapy, 39, 1126-1148. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Zia, K., Nur-E-Alam, M., Ahmad, A., et al. (2024) Taming the Cytokine Storm: Small Molecule Inhibitors Targeting IL-6/IL-6α Receptor. Molecular Diversity. https://Link.Springer.Com/Article/10.1007/S11030-023-10805-5#Sec17 [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Zhang, S., Chen, B., Wang, B., et al. (2023) Effect of Induction Therapy with Olamkicept vs Placebo on Clinical Response in Patients with Active Ulcerative Colitis: A Randomized Clinical Trial. JAMA, 329, 725-734. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Xu, F., Wang, S., Wang, Y., et al. (2023) Inhibition of Gp130 Alleviates LPS-Induced Lung Injury by Attenuating Apoptosis and Inflammation through JAK1/STAT3 Signaling Pathway. Inflammation Research, 72, 493-507. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Rose-John, S. (2017) The Soluble Interleukin 6 Receptor: Advanced Therapeutic Options in Inflammation. Clinical Pharmacology and Therapeutics, 102, 591-598. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Saad, M.I. and Jenkins, B.J. (2024) The Protease ADAM17 at the Crossroads of Disease: Revisiting Its Significance in Inflammation, Cancer, and beyond. The FEBS Journal, 291, 10-24. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Schumacher, N. and Rose-John, S. (2019) ADAM17 Activity and IL-6 Trans-Signaling in Inflammation and Cancer. Cancers, 11, Article 1736. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Zunke, F. and Rose-John, S. (2017) the Shedding Protease ADAM17: Physiology and Pathophysiology. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1864, 2059-2070. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Wong, E., Cohen, T., Romi, E., et al. (2016) Harnessing the Natural Inhibitory Domain to Control TNFα Converting Enzyme (TACE) Activity in Vivo. Scientific Reports, 6, Article No. 35598. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Dreymueller, D., Martin, C., Kogel, T., et al. (2012) Lung Endothelial ADAM17 Regulates the Acute Inflammatory Response to Lipopolysaccharide. EMBO Molecular Medicine, 4, 412-423. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Lartey, N.L., Valle-Reyes, S., Vargas-Robles, H., et al. (2022) ADAM17/MMP Inhibition Prevents Neutrophilia and Lung Injury in a Mouse Model of COVID-19. Journal of Leukocyte Biology, 111, 1147-1158. [Google Scholar] [CrossRef]
|