移动环境下具有时滞的 Lotka-Volterra合作模型的行波解
Traveling Wave Solutions of a Lotka-Volterra Cooperative Model with Time Delay in a Shifting Environment
DOI: 10.12677/AAM.2024.134110, PDF,    科研立项经费支持
作者: 肖义萍:长沙理工大学数学与统计学院, 湖南 长沙
关键词: Lotka-Volterra 合作模型移动环境时滞Lotka-Volterra Cooperative Model Shifting Environment Time Delay
摘要: 本文研究了移动环境下具有非局部扩散和时滞的Lotka-Volterra合作模型行波解的存在性。 通过 构造一对合适的上下解,再利用单调迭代,证明了当环境运动速度时,系统存在行波解。
Abstract: In this paper, we study the existence and uniqueness of forced traveling wave solu- tion for Lotka-Volterra cooperative model with nonlocal diffusion and time delay in a shifting environment. By constructing a pair of appropriate upper and lower solutions and using the monotone iteration, we prove that there is a traveling wave solution if the speed of the environmental movement .
文章引用:肖义萍. 移动环境下具有时滞的 Lotka-Volterra合作模型的行波解[J]. 应用数学进展, 2024, 13(4): 1197-1209. https://doi.org/10.12677/AAM.2024.134110

参考文献

[1] Cantrell, R.S. and Cosner, C. (1991) The Effects of Spatial Heterogeneity in Population Dy- namics. Journal of Mathematical Biology, 29, 315-338. [Google Scholar] [CrossRef
[2] Berestycki, H., Diekmann, O., Nagelkerke, C.J., et al. (2009) Can a Species Keep Pace with a Shifting Climate? Bulletin of Mathematical Biology, 71, 399-429. [Google Scholar] [CrossRef] [PubMed]
[3] Berestycki, H. and Fang, J. (2018) Forced Waves of the Fisher-KPP Equation in a Shifting Environment. Journal of Differential Equations, 264, 2157-2183. [Google Scholar] [CrossRef
[4] Li, B., Bewick, S., Shang, J., et al. (2015) Erratum to: Persistence and Spread of a Species with a Shifting Habitat Edge. SIAM Journal on Applied Mathematics, 75, 2379-2380. [Google Scholar] [CrossRef
[5] Hu, H and Zou, X. (2017) Existence of an Extinction Wave in the Fisher Equation with a Shifting Habitat. Proceedings of the American Mathematical Society, 145, 4763-4771. [Google Scholar] [CrossRef
[6] Yang, Y., Wu, C. and Li, Z. (2019) Forced Waves and Their Asymptotics in a Lotka-Volterra Cooperative Model under Climate Change. Applied Mathematics and Computation, 353, 254- 264. [Google Scholar] [CrossRef
[7] Wang, H., Pan, C. and Ou, C. (2020) Existence of Forced Waves and Gap Formations for the Lattice Lotka-Volterra Competition System in a Shifting Environment. Applied Mathematics Letters, 106, Article 106349. [Google Scholar] [CrossRef
[8] Wu, C. and Xu, Z. (2021) Propagation Dynamics in a Heterogeneous Reaction-Diffusion Sys- tem under a Shifting Environment. Journal of Dynamics and Differential Equations, 35, 493- 521. [Google Scholar] [CrossRef
[9] Wang, H., Pan, C. and Ou, C. (2021) Existence, Uniqueness and Stability of Forced Waves to the Lotka-Volterra Competition System in a Shifting Environment. Studies in Applied Math- ematics, 148, 186-218.
[10] Murray, J.D. (2003) Mathematical Biology: Spatial Models and Biomedical Applications. Springer, New York.
[11] Wang, J. and Li, W. (2020) Wave Propagation for a Cooperative Model with Nonlocal Dispersal under Worsening Habitats. Zeitschrift fu¨r Angewandte Mathematik und Physik, 71, Article No. 147. [Google Scholar] [CrossRef
[12] Li, W., Wang, J. and Zhao, X. (2018) Spatial Dynamics of a Nonlocal Dispersal Population Model in a Shifting Environment. Journal of Nonlinear Science, 28, 1189-1219. [Google Scholar] [CrossRef
[13] Wang, J. and Zhao, X. (2019) Uniqueness and Global Stability of Forced Waves in a Shifting Environment. Proceedings of the American Mathematical Society, 147, 1467-1481. [Google Scholar] [CrossRef
[14] Wang, J.-B. and Wu, C. (2020) Forced Waves and Gap Formations for a Lotka-Volterra Com- petition Model with Nonlocal Dispersal and Shifting Habitats. Nonlinear Analysis: Real World Applications, 58, Article 103208. [Google Scholar] [CrossRef
[15] Wu, C., Wang, Y. and Zou, X. (2019) Spatial-Temporal Dynamics of a Lotka-Volterra Com- petition Model with Nonlocal Dispersal under Shifting Environment. Journal of Differential Equations, 267, 4890-4921. [Google Scholar] [CrossRef
[16] Hu, H., Deng, L. and Huang, J. (2021) Traveling Wave of a Nonlocal Dispersal Lotka-Volterra Cooperation Model under Shifting Habitat. Journal of Mathematical Analysis and Applica- tions, 500, Article 125100. [Google Scholar] [CrossRef
[17] Pan, S. and Lin, L.G. (2009) Travelling Wave Fronts in Nonlocal Delayed Reaction-Diffusion Systems and Applications. Zeitschrift fu¨r Angewandte Mathematik und Physik, 60, 377-392. [Google Scholar] [CrossRef
[18] Wu, J. and Zou, X. (2001) Traveling Wave Fronts of Reaction-Diffusion Systems with Delay. Journal of Dynamics and Differential Equations, 13, 651-687. [Google Scholar] [CrossRef
[19] Ma, S. (2001) Traveling Wavefronts for Delayed Reaction-Diffusion Systems via a Fixed Point Theorem. Journal of Differential Equations, 171, 294-314. [Google Scholar] [CrossRef
[20] Huang, J. and Zou, X. (2003) Existence of Traveling Wavefronts of Delayed Reaction Diffusion Systems without Monotonicity. Discrete and Continuous Dynamical Systems, 9, 925-936. [Google Scholar] [CrossRef
[21] Wu, C., Yang, Y. and Wu, Z. (2021) Existence and Uniqueness of Forced Waves in a De- layed Reaction-Diffusion Equation in a Shifting Environment. Nonlinear Analysis: Real World Applications, 57, Article 103198. [Google Scholar] [CrossRef
[22] Schaaf, K.W. (1987) Asymptotic Behavior and Traveling Wave Solutions for Parabolic Func- tional Differential Equations. Transactions of the AMS, 302, 587-615. [Google Scholar] [CrossRef
[23] Zhen, J. and Ma, Z. (2002) Stability for a Competitive Lotka-Volterra System with Delays. Nonlinear Analysis Theory Methods and Applications, 51, 1131-1142. [Google Scholar] [CrossRef
[24] Pao, C.V. (2004) Global Asymptotic Stability of Lotka-Volterra Competition Systems with Diffusion and Time Delays. Nonlinear Analysis: Real World Applications, 5, 9-104. [Google Scholar] [CrossRef
[25] Li, K. and Li, X. (2012) Traveling Wave Solutions in a Delayed Diffusive Competition System. Nonlinear Analysis: Theory, Methods and Applications, 75, 3705-3722. [Google Scholar] [CrossRef
[26] Lv, G. and Wang, M. (2010) Traveling Wave Front in Diffusive and Competitive Lotka-Volterra System with Delays. Nonlinear Analysis Real World Applications, 11, 1323-1329. [Google Scholar] [CrossRef
[27] Yu, Z.-X. and Yuan, R. (2009) Travelling Wave Solutions in Nonlocal Reaction-Diffusion Sys- tems with Delays and Applications. The ANZIAM Journal, 51, 49-66. [Google Scholar] [CrossRef
[28] 程红梅, 袁荣. 移动环境下带有非局部扩散项和时沛的反应扩散方程的强迫行波解[J]. 数学物理学报: A 辑, 2022, 42(2): 491-501.