|
[1]
|
Chen, H., Duan, S., Tang, Y. and Xie, J. (2018) Global Dynamics of a Mechanical System with Dry Friction. Journal of Differential Equations, 265, 5490-5519. [Google Scholar] [CrossRef]
|
|
[2]
|
Banerjee, S. and Verghese, G.C. (2001) Nonlinear Phenomena in Power Electronics: Bifurca- tions, Chaos, Control, and Applications. IEEE Press, New York. [Google Scholar] [CrossRef]
|
|
[3]
|
Wang, J., Zhang, F. and Wang, L. (2016) Equilibrium, Pseudoequilibrium and Sliding-Mode Heteroclinic Orbit in a Filippov-Type Plant Disease Model. Nonlinear Analysis: Real World Applications, 31, 308-324. [Google Scholar] [CrossRef]
|
|
[4]
|
di Bernardo, M., Nordmark, A. and Olivar, G. (2008) Discontinuity-Induced Bifurcations of Equilibria in Piecewise-Smooth and Impacting Dynamical Systems. Physica D: Nonlinear Phenomena, 237, 119-136. [Google Scholar] [CrossRef]
|
|
[5]
|
Angulo, F., Olivar, G., Osorio, G.A., Escobar, C.M., Ferreira, J.D. and Redondo, J.M. (2012) Bifurcations of Non-Smooth Systems. Communications in Nonlinear Science and Numerical Simulation, 17, 4683-4689. [Google Scholar] [CrossRef]
|
|
[6]
|
Chen, X. and Han, M. (2022) Further Study on Horozov-Iliev’s Method of Estimating the Number of Limit Cycles. Science China Mathematics, 65, 2255-2270. [Google Scholar] [CrossRef]
|
|
[7]
|
Han, M. and Zhang, W. (2010) On Hopf Bifurcation in Non-Smooth Planar Systems. Journal of Differential Equations, 248, 2399-2416. [Google Scholar] [CrossRef]
|
|
[8]
|
Novaes, D.D., Teixeira, M.A. and Zeli, I.O. (2018) The Generic Unfolding of a Codimension- Two Connection to a Two-Fold Singularity of Planar Filippov Systems. Nonlinearity, 31, 2083-2104. [Google Scholar] [CrossRef]
|
|
[9]
|
Shao, Y., Li, S. and Wu, K. (2021) Global Phase Portraits of Planar Piecewise Linear Refract- ing Systems of Saddle-Saddle Type. Nonlinear Analysis: Real World Applications, 62, Article 103381. [Google Scholar] [CrossRef]
|
|
[10]
|
Freire, E., Ponce, E. and Torres, F. (2012) Canonical Discontinuous Planar Piecewise Linear Systems. SIAM Journal on Applied Dynamical Systems, 11, 181-211. [Google Scholar] [CrossRef]
|
|
[11]
|
Freire, E., Ponce, E. and Torres, F. (2014) A General Mechanism to Generate Three Limit Cycles in Planar Filippov Systems with Two Zones. Nonlinear Dynamics, 78, 251-263. [Google Scholar] [CrossRef]
|
|
[12]
|
Freire, E., Ponce, E. and Torres, F. (2015) On the Critical Crossing Cycle Bifurcation in Planar Filippov Systems. Journal of Differential Equations, 259, 7086-7107. [Google Scholar] [CrossRef]
|
|
[13]
|
Wang, J., Huang, C. and Huang, L. (2019) Discontinuity-Induced Limit Cycles in A General Planar Piecewise Linear System of Saddle-Focus Type. Nonlinear Analysis: Hybrid Systems, 33, 162-178. [Google Scholar] [CrossRef]
|
|
[14]
|
Filippov, A.F. (1988) Differential Equations with Discontinuous Right-Hand Sides. Kluwer Academic Publishers, London.
|
|
[15]
|
Kuznetsov, Y.A., Rinaldi, S. and Gragnani, A. (2003) One-Parameter Bifurcations in Planar Filippov Systems. International Journal of Bifurcation and Chaos, 13, 2157-2188. [Google Scholar] [CrossRef]
|
|
[16]
|
Guardia, M., Seara, T. and Teixeira, M. (2011) Generic Bifurcations of Low Codimension of Planar Filippov Systems. Journal of Differential Equations, 250, 1967-2023. [Google Scholar] [CrossRef]
|
|
[17]
|
Wang, J. and Huang, L. (2021) Limit Cycles Bifurcated from a Focus-Fold Singularity in General Piecewise Smooth Planar Systems. Journal of Differential Equations, 304, 491-519. [Google Scholar] [CrossRef]
|
|
[18]
|
Wiggins, S. (2003) Introduction to Applied Nonlinear Dynamical System and Chaos. Springer- Verlag, New York.
|