一类具有不连续控制策略的肿瘤免疫系统的全局动力学
Global Dynamics of a Class of Tumor-Immune Systems withDiscontinuous Control Strategies
DOI: 10.12677/AAM.2024.134115, PDF,   
作者: 刘粤湘:长沙理工大学数学与统计学院, 湖南 长沙
关键词: Filippov系统肿瘤免疫模型阈值策略稳定性Filippov System Tumor-Immune Model Threshold Strategy Stability
摘要: 本文致力于研究一类具有阈值控制策略的肿瘤免疫模型。利用Filippov理论分析了滑模动力学和全局动力学。 研究发现,系统的动力学行为随着阁值的改变而改变,包括边界焦点分支。
Abstract: This paper is dedicated to the study of a class of tumor immune models with threshold control strategies. The Filippov theory was used to analyze the sliding mode dynamics and global dynamics. It is found that the dynamic behavior of the system changes with the change of thresholds, including the boundary focus branch.
文章引用:刘粤湘. 一类具有不连续控制策略的肿瘤免疫系统的全局动力学[J]. 应用数学进展, 2024, 13(4): 1248-1260. https://doi.org/10.12677/AAM.2024.134115

参考文献

[1] Lagiou, P., Trichopoulou, A. and Trichopoulos, D. (2002) Nutritional Epidemiology of Cancer: Accomplishments and Prospects. Proceedings of the Nutrition Society, 61, 217-222. [Google Scholar] [CrossRef
[2] Chignola, R. and Foroni, R.I. (2005) Estimating the Growth Kinetics of Experimental Tumors from as Few as Two Determinations of Tumor Size: Implications for Clinical Oncology. Trans- actions on Biomedical Engineering, 52, 808-815. [Google Scholar] [CrossRef
[3] Maletzki, C. and Emmrich, J. (2010) Inflammation and Immunity in the Tumor Environment. Digestive Diseases, 28, 574-578. [Google Scholar] [CrossRef] [PubMed]
[4] Raghani, N.R., Chorawala, M.R., Mahadik, M., Patel, R.B., Prajapati, B.G. and Parekh, P.S. (2024) Revolutionizing Cancer Treatment: Comprehensive Insights into Immunotherapeutic Strategies. Medical Oncology, 41, Article No. 51. [Google Scholar] [CrossRef] [PubMed]
[5] Mallet, D.G. and De Pillis, L.G. (2006) A Cellular Automata Model of Tumor-Immune System Interactions. Journal of Theoretical Biology, 239, 334-350. [Google Scholar] [CrossRef] [PubMed]
[6] Hoffmann, B., Lange, T., Labitzky, V., Riecken, K., Wree, A., Schumacher, U. and Wedemann, G. (2020) The Initial Engraftment of Tumor Cells Is Critical for the Future Growth Pattern: A Mathematical Study Based on Simulations and Animal Experiments. BMC Cancer, 20, Article No. 524. [Google Scholar] [CrossRef] [PubMed]
[7] Belostotski, G. (2004) A Control Theory Model for Cancer Treatment by Radiotherapy. M.Sc. Thesis, University of Alberta, Edmonton.
[8] Freedman, H.I. and Belostotski, G. (2009) Perturbed Models for Cancer Treatment by Radio- therapy. Differential Equations and Dynamical Systems, 17, 115-133. [Google Scholar] [CrossRef
[9] Liu, Z., Luo, Z. and Tan, Y. (2023) Mathematical Models and Dynamic Behaviors of Can- cer Treatment by Continuous and Pulsed Radiotherapy. Journal of Applied Mathematics and Computation, 69, 1819-1843. [Google Scholar] [CrossRef
[10] Kuznetsov, V.A., Makalkin, I.A., Taylor, M.A. and Perelson, AS. (1994) Nonlinear Dynamics of Immunogenic Tumors: Parameter Estimation and Global Bifurcation Analysis. Bulletin of Mathematical Biology, 56, 295-321. [Google Scholar] [CrossRef
[11] Dunia, R. and Edgar, T.F. (2011) Modeling of Tumor Growth Undergoing Virotherapy. Com- puters in Biology and Medicine, 41, 922-935. [Google Scholar] [CrossRef] [PubMed]
[12] Ledzewicz, U. and Schaettler, H. (2016) Optimizing Chemotherapeutic Anti-Cancer Treatment and the Tumor Microenvironment: An Analysis of Mathematical Models. Advances in Exper- imental Medicine and Biology, 936, 209-223. 11 [Google Scholar] [CrossRef
[13] Liu, P. and Liu, X. (2017) Dynamics of a Tumor-Immune Model Considering Targeted Chemotherapy. Chaos, Solitons & Fractals, 98, 7-13. [Google Scholar] [CrossRef
[14] Koziol, J.A., Falls, T.J. and Schnitzer, J.E. (2020) Different ODE Models of Tumor Growth Can Deliver Similar Results. BMC Cancer, 20, Article No. 226. [Google Scholar] [CrossRef] [PubMed]
[15] Peng, H. and Xiang, C. (2023) A Filippov Tumor-Immune System with Antigenicity. AIMS Mathematics, 8, 19699-19718. [Google Scholar] [CrossRef
[16] Li, J., Xie, X., Chen, Y. and Zhang, D. (2021) Complex Dynamics of a Tumor-Immune System with Antigenicity. Applied Mathematics and Computation, 400, Article 126052. [Google Scholar] [CrossRef
[17] Filippov, A.F. (1988) Differential Equations with Discontinuous Right-Hand Sides. Kluwer Academic Publishers, London. [Google Scholar] [CrossRef
[18] 黄立宏, 王佳伏. 右端不连续微分方程模型及其动力学分析[M]. 北京: 科学出版社, 2021.
[19] 钱祥征, 戴斌祥, 刘开宇. 非线性常微分方程的理论、 方法、 应用[M]. 长沙: 湖南大学出版社, 2006.