|
[1]
|
Sung, H., Ferlay, J., Siegel, R.L., et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71, 209-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Neppl-Huber, C., Zappa, M., Coebergh, J.W., et al. (2012) Changes in Incidence, Survival and Mortality of Prostate Cancer in Europe and the United States in the PSA Era: Additional Diagnoses and Avoided Deaths. Annals of Oncology, 23, 1325-1334. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Resnick, M.J., Koyama, T., Fan, K.H., et al. (2013) Long-Term Functional Outcomes after Treatment for Localized Prostate Cancer. The New England Journal of Medicine, 368, 436-445. [Google Scholar] [CrossRef]
|
|
[4]
|
Godtman, R.A., Kollberg, K.S., Pihl, C.G., et al. (2022) The Association between Age, Prostate Cancer Risk, and Higher Gleason Score in a Long-Term Screening Program: Results from the Göteborg-1 Prostate Cancer Screening Trial. European Urology, 82, 311-317. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Sekhoacha, M., Riet, K., Motloung, P., et al. (2022) Prostate Cancer Review: Genetics, Diagnosis, Treatment Options, and Alternative Approaches. Molecules, 27, Article 5730. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Fernández-Anguita, P.J., Ventosa-Puig, M., Díaz De Mera-Sánchez Migallón, I., et al. (2023) Value of Prostate-Specific Antigen Kinetics in Patients with Low-Risk Prostate Cancer under Active Surveillance. Urologia Internationalis, 107, 706-712. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Goluboff, E.T., Heitjan, D.F., Devries, G.M., et al. (1997) Pretreatment Prostate Specific Antigen Doubling Times: Use in Patients before Radical Prostatectomy. Journal of Urology, 158, 1876-1878. [Google Scholar] [CrossRef]
|
|
[8]
|
Egawa, S., Arai, Y., Tobisu, K., et al. (2000) Use of Pretreatment Prostate-Specific Antigen Doubling Time to Predict Outcome after Radical Prostatectomy. Prostate Cancer and Prostatic Diseases, 3, 269-274. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Schaeffer, E.M., Srinivas, S., Adra, N., et al. (2023) Prostate Cancer, Version 4.2023, NCCN Clinical Practice Guidelines in Oncology. The National Comprehensive Cancer Network, 21, 1067-1096. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Naji, L., Randhawa, H., Sohani, Z., et al. (2018) Digital Rectal Examination for Prostate Cancer Screening in Primary Care: A Systematic Review and Meta-Analysis. The Annals of Family Medicine, 16, 149-154. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Herrera-Caceres, J.O., Wettstein, M.S., Goldberg, H., et al. (2020) Utility of Digital Rectal Examination in a Population with Prostate Cancer Treated with Active Surveillance. Canadian Urological Association Journal, 14, E453-E457. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Mottet, N., Van Den Bergh, R.C.N., Briers, E., et al. (2021) EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer-2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. European Urology, 79, 243-262. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Mottet, N., Bellmunt, J., Bolla, M., et al. (2017) EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. European Urology, 71, 618-629. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Hodge, K.K., Mcneal, J.E. and Stamey, T.A. (1989) Ultrasound Guided Transrectal Core Biopsies of the Palpably Abnormal Prostate. Journal of Urology, 142, 66-70. [Google Scholar] [CrossRef]
|
|
[15]
|
Boesen, L. (2017) Multiparametric MRI in Detection and Staging of Prostate Cancer. Danish Medical Journal, 64, B5327.
|
|
[16]
|
Lee, D.J., Recabal, P., Sjoberg, D.D., et al. (2016) Comparative Effectiveness of Targeted Prostate Biopsy Using Magnetic Resonance Imaging Ultrasound Fusion Software and Visual Targeting: A Prospective Study. Journal of Urology, 196, 697-702. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Castellucci, R., Linares Quevedo, A.I., Sánchez Gómez, F.J., et al. (2017) Prospective Nonrandomized Study of Diagnostic Accuracy Comparing Prostate Cancer Detection by Transrectal Ultrasound-Guided Biopsy to Magnetic Resonance Imaging with Subsequent MRI-Guided Biopsy in Biopsy-Naïve Patients. Minerva Urology and Nephrology, 69, 589-595. [Google Scholar] [CrossRef]
|
|
[18]
|
Delongchamps, N.B., Peyromaure, M., Schull, A., et al. (2013) Prebiopsy Magnetic Resonance Imaging and Prostate Cancer Detection: Comparison of Random and Targeted Biopsies. Journal of Urology, 189, 493-499. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Kam, J., Yuminaga, Y., Kim, R., et al. (2018) Does Magnetic Resonance Imaging-Guided Biopsy Improve Prostate Cancer Detection? A Comparison of Systematic, Cognitive Fusion and Ultrasound Fusion Prostate Biopsy. Prostate International, 6, 88-93. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Wegelin, O., Exterkate, L., Van Der Leest, M., et al. (2019) The FUTURE Trial: A Multicenter Randomised Controlled Trial on Target Biopsy Techniques Based on Magnetic Resonance Imaging in the Diagnosis of Prostate Cancer in Patients with Prior Negative Biopsies. European Urology, 75, 582-590. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Elkhoury, F.F., Felker, E.R., Kwan, L., et al. (2019) Comparison of Targeted vs Systematic Prostate Biopsy in Men Who Are Biopsy Naive: The Prospective Assessment of Image Registration in the Diagnosis of Prostate Cancer (PAIREDCAP) Study. JAMA Surgery, 154, 811-818. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Hugosson, J., Månsson, M., Wallström, J., et al. (2022) Prostate Cancer Screening with PSA and MRI Followed by Targeted Biopsy Only. The New England Journal of Medicine, 387, 2126-2137. [Google Scholar] [CrossRef]
|
|
[23]
|
Frye, T.P., George, A.K., Kilchevsky, A., et al. (2017) Magnetic Resonance Imaging-Transrectal Ultrasound Guided Fusion Biopsy to Detect Progression in Patients with Existing Lesions on Active Surveillance for Low and Intermediate Risk Prostate Cancer. Journal of Urology, 197, 640-646. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Schoots, I.G., Nieboer, D., Giganti, F., et al. (2018) Is Magnetic Resonance Imaging-Targeted Biopsy a Useful Addition to Systematic Confirmatory Biopsy in Men on Active Surveillance for Low-Risk Prostate Cancer? A Systematic Review and Meta-Analysis. BJU International, 122, 946-958. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Hamoen, E.H.J., Hoeks, C.M.A., Somford, D.M., et al. (2019) Value of Serial Multiparametric Magnetic Resonance Imaging and Magnetic Resonance Imaging-Guided Biopsies in Men with Low-Risk Prostate Cancer on Active Surveillance after 1 Yr Follow-Up. European Urology Focus, 5, 407-415. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Pepe, P., Pepe, L., Pennisi, M., et al. (2022) Confirmatory Transperineal Saturation Prostate Biopsy Combined with MpMRI Decrease the Reclassification Rate in Men Enrolled in Active Surveillance: Our Experience in 100 Men Submitted to Eight-Years Scheduled Biopsy. Archivio Italiano Di Urologia E Andrologia, 94, 270-273. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Dieffenbacher, S., Nyarangi-Dix, J., Giganti, F., et al. (2021) Standardized Magnetic Resonance Imaging Reporting Using the Prostate Cancer Radiological Estimation of Change in Sequential Evaluation Criteria and Magnetic Resonance Imaging/Transrectal Ultrasound Fusion with Transperineal Saturation Biopsy to Select Men on Active Surveillance. European Urology Focus, 7, 102-110. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
中华医学会男科学分会, 前列腺穿刺活检专家共识编写组. 前列腺穿刺活检专家共识[J]. 中华男科学杂志, 2022, 28(5): 462-470.
|
|
[29]
|
顾伟杰, 朱耀. 2022版《CSCO前列腺癌诊疗指南》更新要点解读[J]. 中国肿瘤外科杂志, 2022, 14(3): 224-232.
|
|
[30]
|
Borghesi, M., Bianchi, L., Barbaresi, U., et al. (2021) Diagnostic Performance of MRI/TRUS Fusion-Guided Biopsies vs. Systematic Prostate Biopsies in Biopsy-Naïve, Previous Negative Biopsy Patients and Men Undergoing Active Surveillance. Minerva Urology and Nephrology, 73, 357-366. [Google Scholar] [CrossRef]
|
|
[31]
|
Benelli, A., Vaccaro, C., Guzzo, S., et al. (2020) The Role of MRI/TRUS Fusion Biopsy in the Diagnosis of Clinically Significant Prostate Cancer. Therapeutic Advances in Urology, 12. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Moore, C.M., King, L.E., Withington, J., et al. (2023) Best Current Practice and Research Priorities in Active Surveillance for Prostate Cancer—A Report of a Movember International Consensus Meeting. European Urology Oncology, 6, 160-182. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
王立鹏, 阳青松, 张威, 等. 多参数磁共振成像在前列腺癌中的诊断价值[J]. 第二军医大学学报, 2019, 40(11): 1236-1241.
|
|
[34]
|
Ploussard, G., Rouvière, O., Rouprêt, M., et al. (2022) The Current Role of MRI for Guiding Active Surveillance in Prostate Cancer. Nature Reviews Urology, 19, 357-365. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Greenberg, J.W., Koller, C.R., Lightfoot, C., et al. (2024) Annual MpMRI Surveillance: PI-RADS Upgrading and Increasing Trend Correlated with Patients Who Harbor Clinically Significant Disease. Urologic Oncology: Seminars and Original Investigations. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Schmid, F.A., Lieger, L., Saba, K., et al. (2023) Therapy Decisions after Diagnosis of Prostate Cancer in Men with Negative Prostate MRI. Prostate, 83, 56-63. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Zhai, L., Fan, Y., Meng, Y., et al. (2019) The Role of Prostate Imaging Reporting and Data System Score in Gleason 3 3 Active Surveillance Candidates Enrollment: A Diagnostic Meta-Analysis. Prostate Cancer and Prostatic Diseases, 22, 235-243. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Luiting, H.B., Remmers, S., Boevé, E.R., et al. (2022) A Multivariable Approach Using Magnetic Resonance Imaging to Avoid a Protocol-Based Prostate Biopsy in Men on Active Surveillance for Prostate Cancer-Data from the International Multicenter Prospective PRIAS Study. European Urology Oncology, 5, 651-658. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Luzzago, S., Piccinelli, M.L., Mistretta, F.A., et al. (2022) Repeat MRI during Active Surveillance: Natural History of Prostatic Lesions and Upgrading Rates. BJU International, 129, 524-533. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Nguyen, T.A., Fourcade, A., Zambon, A., et al. (2023) Optimal PSA Density Threshold and Predictive Factors for the Detection of Clinically Significant Prostate Cancer in Patient with a PI-RADS 3 Lesion on MRI. Urologic Oncology: Seminars and Original Investigations, 41, 354.e11-354.e18. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Wang, C., Yuan, L., Shen, D., et al. (2022) Combination of PI-RADS Score and PSAD Can Improve the Diagnostic Accuracy of Prostate Cancer and Reduce Unnecessary Prostate Biopsies. Frontiers in Oncology, 12, Article 1024204. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Moore, C.M., Giganti, F., Albertsen, P., et al. (2017) Reporting Magnetic Resonance Imaging in Men on Active Surveillance for Prostate Cancer: The PRECISE Recommendations—A Report of a European School of Oncology Task Force. European Urology, 71, 648-655. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Bhanji, Y., Mamawala, M., De La Calle, C.M., et al. (2023) Prostate Cancer Radiological Estimation of Change in Sequential Evaluation (PRECISE) Magnetic Resonance Imaging Scoring to Predict Clinical Outcomes in Active Surveillance for Grade Group 1 Prostate Cancer. Urology, 180, 194-199. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Caglic, I., Sushentsev, N., Gnanapragasam, V.J., et al. (2021) MRI-Derived PRECISE Scores for Predicting Pathologically-Confirmed Radiological Progression in Prostate Cancer Patients on Active Surveillance. European Radiology, 31, 2696-2705. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Aerts, J., Hendrickx, S., Berquin, C., et al. (2023) Clinical Application of the Prostate Cancer Radiological Estimation of Change in Sequential Evaluation Score for Reporting Magnetic Resonance Imaging in Men on Active Surveillance for Prostate Cancer. European Urology Open Science, 56, 39-46. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
O’connor, L.P., Wang, A.Z., Yerram, N.K., et al. (2021) Changes in Magnetic Resonance Imaging Using the Prostate Cancer Radiologic Estimation of Change in Sequential Evaluation Criteria to Detect Prostate Cancer Progression for Men on Active Surveillance. European Urology Oncology, 4, 227-234. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Silver, D.A., Pellicer, I., Fair, W.R., et al. (1997) Prostate-Specific Membrane Antigen Expression in Normal and Malignant Human Tissues. Clinical Cancer Research, 3, 81-85.
|
|
[48]
|
Bostwick, D.G., Pacelli, A., Blute, M., et al. (1998) Prostate Specific Membrane Antigen Expression in Prostatic Intraepithelial Neoplasia and Adenocarcinoma: A Study of 184 Cases. Cancer, 82, 2256-2261. [Google Scholar] [CrossRef]
|
|
[49]
|
Eiber, M., Weirich, G., Holzapfel, K., et al. (2016) Simultaneous 68Ga-PSMA HBED-CC PET/MRI Improves the Localization of Primary Prostate Cancer. European Urology, 70, 829-836. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Borque-Fernando, Á., Rubio-Briones, J., Esteban, L.M., et al. (2019) Role of the 4Kscore Test as a Predictor of Reclassification in Prostate Cancer Active Surveillance. Prostate Cancer and Prostatic Diseases, 22, 84-90. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Lin, D.W., Newcomb, L.F., Brown, M.D., et al. (2017) Evaluating the Four Kallikrein Panel of the 4Kscore for Prediction of High-Grade Prostate Cancer in Men in the Canary Prostate Active Surveillance Study. European Urology, 72, 448-454. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Eure, G., Germany, R., Given, R., et al. (2017) Use of a 17-Gene Prognostic Assay in Contemporary Urologic Practice: Results of an Interim Analysis in an Observational Cohort. Urology, 107, 67-75. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Tosoian, J.J., Patel, H.D., Mamawala, M., et al. (2017) Longitudinal Assessment of Urinary PCA3 for Predicting Prostate Cancer Grade Reclassification in Favorable-Risk Men during Active Surveillance. Prostate Cancer and Prostatic Diseases, 20, 339-342. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Cantiello, F., Russo, G.I., Cicione, A., et al. (2016) PHI and PCA3 Improve the Prognostic Performance of PRIAS and Epstein Criteria in Predicting Insignificant Prostate Cancer in Men Eligible for Active Surveillance. World Journal of Urology, 34, 485-493. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Cantiello, F., Russo, G.I., Ferro, M., et al. (2015) Prognostic Accuracy of Prostate Health Index and Urinary Prostate Cancer Antigen 3 in Predicting Pathologic Features after Radical Prostatectomy. Urologic Oncology: Seminars and Original Investigations, 33, 163.e15-163.e23. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Alshalalfa, M., Verhaegh, G.W., Gibb, E.A., et al. (2017) Low PCA3 Expression Is a Marker of Poor Differentiation in Localized Prostate Tumors: Exploratory Analysis from 12,076 Patients. Oncotarget, 8, 50804-50813. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Kornberg, Z., Cooperberg, M.R., Cowan, J.E., et al. (2019) A 17-Gene Genomic Prostate Score as a Predictor of Adverse Pathology in Men on Active Surveillance. Journal of Urology, 202, 702-709. [Google Scholar] [CrossRef]
|
|
[58]
|
Agrawal, V., Ma, X., Hu, J.C., et al. (2021) Active Surveillance for Men with Intermediate Risk Prostate Cancer. Journal of Urology, 205, 115-121. [Google Scholar] [CrossRef]
|
|
[59]
|
Eastham, J.A., Boorjian, S.A. and Kirkby, E. (2022) Clinically Localized Prostate Cancer: AUA/ASTRO Guideline. Journal of Urology, 208, 505-507. [Google Scholar] [CrossRef]
|