|
[1]
|
《中国心血管健康与疾病报告》编写组. 《中国心血管健康与疾病报告2021》要点解读[J]. 中国心血管杂志, 2022, 27(4): 305-318.
|
|
[2]
|
Laflamme, M.A. and Murry, C.E. (2005) Regenerating the Heart. Nature Biotechnology, 23, 845-856. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Garbern, J.C. and Lee, R.T. (2022) Heart Regeneration: 20 Years of Progress and Renewed Optimism. Developmental Cell, 57, 424-439. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Fanton, Y., Robic, B., Rummens, J.L., et al. (2015) Cardiac Atrial Appendage Stem Cells Engraft and Differentiate into Cardiomyocytes in Vivo: A New Tool for Cardiac Repair after MI. International Journal of Cardiology, 201, 10-19. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Kinnaird, T., Stabile, E., Burnett, M.S., et al. (2004) Marrow-Derived Stromal Cells Express Genes Encoding a Broad Spectrum of Arteriogenic Cytokines and Promote in Vitro and in Vivo Arteriogenesis through Paracrine Mechanisms. Circulation Research, 94, 678-685. [Google Scholar] [CrossRef]
|
|
[6]
|
Ye, L., Chang, Y.H., Xiong, Q., et al. (2014) Cardiac Repair in a Porcine Model of Acute Myocardial Infarction with Human Induced Pluripotent Stem Cell-Derived Cardiovascular Cells. Cell Stem Cell, 15, 750-761. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Padula, S.L., Velayutham, N. and Yutzey, K.E. (2021) Transcriptional Regulation of Postnatal Cardiomyocyte Maturation and Regeneration. International Journal of Molecular Sciences, 22, 3288. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Aguirre, A., Montserrat, N., Zacchigna, S., et al. (2014) In Vivo Activation of a Conserved MicroRNA Program Induces Mammalian Heart Regeneration. Cell Stem Cell, 15, 589-604. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Di Stefano, V., Giacca, M., Capogrossi, M.C., et al. (2011) Knockdown of Cyclin-Dependent Kinase Inhibitors Induces Cardiomyocyte Re-Entry in the Cell Cycle. Journal of Biological Chemistry, 286, 8644-8654. [Google Scholar] [CrossRef]
|
|
[10]
|
D’Uva, G., Aharonov, A., Lauriola, M., et al. (2015) ERBB2 Triggers Mammalian Heart Regeneration by Promoting Cardiomyocyte Dedifferentiation and Proliferation. Nature Cell Biology, 17, 627-638. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Asl, S.K., Rahimzadegan, M. and Asl, A.K. (2024) Progress in Cardiac Tissue Engineering and Regeneration: Implications of Gelatin-Based Hybrid Scaffolds. International Journal of Biological Macromolecules, 261, Article ID: 129924. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Smits, A.M. and Riley, P.R. (2014) Epicardium-Derived Heart Repair. Journal of Developmental Biology, 2, 84-100. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Winter, E.M., Grauss, R.W., Hogers, B., et al. (2007) Preservation of Left Ventricular Function and Attenuation of Remodeling after Transplantation of Human Epicardium-Derived Cells into the Infarcted Mouse Heart. Circulation, 116, 917-927. [Google Scholar] [CrossRef]
|
|
[14]
|
Van Wijk, B., Gunst, Q.D., Moorman, A.F., et al. (2012) Cardiac Regeneration from Activated Epicardium. PLOS ONE, 7, e44692. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Limana, F., Zacheo, A., Mocini, D., et al. (2007) Identification of Myocardial and Vascular Precursor Cells in Human and Mouse Epicardium. Circulation Research, 101, 1255-1265. [Google Scholar] [CrossRef]
|
|
[16]
|
Masters, M. and Riley, P.R. (2014) The Epicardium Signals the Way towards Heart Regeneration. Stem Cell Research, 13, 683-692. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Limana, F., Capogrossi, M.C. and Germani, A. (2011) The Epicardium in Cardiac Repair: From the Stem Cell View. Pharmacology & Therapeuticsv, 129, 82-96. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Cai, C.L., Martin, J.C., Sun, Y., et al. (2008) A Myocardial Lineage Derives from Tbx18 Epicardial Cells. Nature, 454, 104-108. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zhou, B., Ma, Q., Rajagopal, S., et al. (2008) Epicardial Progenitors Contribute to the Cardiomyocyte Lineage in the Developing Heart. Nature, 454, 109-113. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Acharya, A., Baek, S.T., Huang, G., et al. (2012) The BHLH Transcription Factor Tcf21 Is Required for Lineage-Specific EMT of Cardiac Fibroblast Progenitors. Development, 139, 2139-2149. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zhou, B. and Pu, W.T. (2008) More than a Cover: Epicardium as a Novel Source of Cardiac Progenitor Cells. Regenerative Medicine, 3, 633-635. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Trembley, M.A., Velasquez, L.S., De Mesy Bentley, K.L., et al. (2015) Myocardin-Related Transcription Factors Control the Motility of Epicardium-Derived Cells and the Maturation of Coronary Vessels. Development, 142, 21-30. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Austin, A.F., Compton, L.A., Love, J.D., et al. (2008) Primary and Immortalized Mouse Epicardial Cells Undergo Differentiation in Response to TGFbeta. Developmental Dynamics, 237, 366-376. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Mellgren, A.M., Smith, C.L., Olsen, G.S., et al. (2008) Platelet-Derived Growth Factor Receptor Beta Signaling Is Required for Efficient Epicardial Cell Migration and Development of Two Distinct Coronary Vascular Smooth Muscle Cell Populations. Circulation Research, 103, 1393-1401. [Google Scholar] [CrossRef]
|
|
[25]
|
Pennisi, D.J. and Mikawa, T. (2009) FGFR-1 Is Required by Epicardium-Derived Cells for Myocardial Invasion and Correct Coronary Vascular Lineage Differentiation. Developmental Biology, 328, 148-159. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Combs, M.D., Braitsch, C.M., Lange, A.W., et al. (2011) NFATC1 Promotes Epicardium-Derived Cell Invasion into Myocardium. Development, 138, 1747-1757. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Sanchez-Fernandez, C., Rodriguez-Outeiriño, L., Matias-Valiente, L., et al. (2022) Regulation of Epicardial Cell Fate during Cardiac Development and Disease: An Overview. International Journal of Molecular Sciences, 23, Article No. 3220. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Von Gise, A. and Pu, W.T. (2012) Endocardial and Epicardial Epithelial to Mesenchymal Transitions in Heart Development and Disease. Circulation Research, 110, 1628-1645. [Google Scholar] [CrossRef]
|
|
[29]
|
Kikuchi, K., Gupta, V., Wang, J., et al. (2011) Tcf21 Epicardial Cells Adopt Non-Myocardial Fates during Zebrafish Heart Development and Regeneration. Development, 138, 2895-2902. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Tandon, P., Miteva, Y.V., Kuchenbrod, L.M., et al. (2013) Tcf21 Regulates the Specification and Maturation of Proepicardial Cells. Development, 140, 2409-2421. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Smith, C.L., Baek, S.T., Sung, C.Y., et al. (2011) Epicardial-Derived Cell Epithelial-to-Mesenchymal Transition and Fate Specification Require PDGF Receptor Signaling. Circulation Research, 108, E15-E26. [Google Scholar] [CrossRef]
|
|
[32]
|
Lavine, K.J., Yu, K., White, A.C., et al. (2005) Endocardial and Epicardial Derived FGF Signals Regulate Myocardial Proliferation and Differentiation in Vivo. Developmental Cell, 8, 85-95. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Pennisi, D.J. and Mikawa, T. (2005) Normal Patterning of the Coronary Capillary Plexus Is Dependent on the Correct Transmural Gradient of FGF Expression in the Myocardium. Developmental Biology, 279, 378-390. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Cavallero, S., Shen, H., Yi, C., et al. (2015) CXCL12 Signaling Is Essential for Maturation of the Ventricular Coronary Endothelial Plexus and Establishment of Functional Coronary Circulation. Developmental Cell, 33, 469-477. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Zhou, B., Honor, L.B., He, H., et al. (2011) Adult Mouse Epicardium Modulates Myocardial Injury by Secreting Paracrine Factors. Journal of Clinical Investigation, 121, 1894-1904. [Google Scholar] [CrossRef]
|
|
[36]
|
Limana, F., Bertolami, C., Mangoni, A., et al. (2010) Myocardial Infarction Induces Embryonic Reprogramming of Epicardial C-Kit( ) Cells: Role of the Pericardial Fluid. Journal of Molecular and Cellular Cardiology, 48, 609-618. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Duim, S.N., Kurakula, K., Goumans, M.J., et al. (2015) Cardiac Endothelial Cells Express Wilms’ Tumor-1: Wt1 Expression in the Developing, Adult and Infarcted Heart. Journal of Molecular and Cellular Cardiology, 81, 127-135. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Rui, L., Yu, N., Hong, L., et al. (2014) Extending the Time Window of Mammalian Heart Regeneration by Thymosin Beta 4. Journal of Cellular and Molecular Medicine, 18, 2417-2424. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Duan, J., Gherghe, C., Liu, D., et al. (2012) Wnt1/βCatenin Injury Response Activates the Epicardium and Cardiac Fibroblasts to Promote Cardiac Repair. The EMBO Journal, 31, 429-442. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Saifi, O., Ghandour, B., Jaalouk, D., et al. (2019) Myocardial Regeneration: Role of Epicardium and Implicated Genes. Molecular Biology Reports, 46, 6661-6674. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Gemberling, M., Karra, R., Dickson, A.L., et al. (2015) Nrg1 Is an Injury-Induced Cardiomyocyte Mitogen for the Endogenous Heart Regeneration Program in Zebrafish. Elife, 4, e05871. [Google Scholar] [CrossRef]
|
|
[42]
|
Dokic, D. and Dettman, R.W. (2006) VCAM-1 Inhibits TGFbeta Stimulated Epithelial-Mesenchymal Transformation by Modulating Rho Activity and Stabilizing Intercellular Adhesion in Epicardial Mesothelial Cells. Developmental Biology, 299, 489-504. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Bax, N.A., Van Oorschot, A.A., Maas, S., et al. (2011) In Vitro Epithelial-to-Mesenchymal Transformation in Human Adult Epicardial Cells Is Regulated by TGFβ-Signaling and WT1. Basic Research in Cardiology, 106, 829-847. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Li, Y., Urban, A., Midura, D., et al. (2017) Proteomic Characterization of Epicardial-Myocardial Signaling Reveals Novel Regulatory Networks Including a Role for NF-κB in Epicardial EMT. PLOS ONE, 12, e0174563. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Clark, C.R., Robinson, J.Y., Sanchez, N.S., et al. (2016) Common Pathways Regulate Type III TGFβ Receptor-Dependent Cell Invasion in Epicardial and Endocardial Cells. Cellular Signalling, 28, 688-698. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
DeLaughter, D.M., Clark, C.R., Christodoulou, D.C., et al. (2016) Transcriptional Profiling of Cultured, Embryonic Epicardial Cells Identifies Novel Genes and Signaling Pathways Regulated by TGFβR3 in Vitro. PLOS ONE, 11, E0159710. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Karra, R., Knecht, A.K., Kikuchi, K., et al. (2015) Myocardial NF-κB Activation Is Essential for Zebrafish Heart Regeneration. Proceedings of the National Academy of Sciences of the United States of America, 112, 13255-13260. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Missinato, M.A., Tobita, K., Romano, N., et al. (2015) Extracellular Component Hyaluronic Acid and Its Receptor Hmmr Are Required for Epicardial EMT during Heart Regeneration. Cardiovascular Research, 107, 487-498. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Lavine, K.J., White, A.C., Park, C., et al. (2006) Fibroblast Growth Factor Signals Regulate a Wave of Hedgehog Activation That Is Essential for Coronary Vascular Development. Genes & Development, 20, 1651-1666. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Foglio, E., Puddighinu, G., Fasanaro, P., et al. (2015) Exosomal Clusterin, Identified in the Pericardial Fluid, Improves Myocardial Performance Following MI through Epicardial Activation, Enhanced Arteriogenesis and Reduced Apoptosis. International Journal of Cardiology, 197, 333-347. [Google Scholar] [CrossRef] [PubMed]
|