|
[1]
|
Wisinger, D. (1993) Bacterial Pneumonia. S. pneumoniae and H. influenzae Are the Villains. Postgraduate Medicine, 93, 43-52. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Kuek, L.E. and Lee, R.J. (2020) First Contact: The Role of Respiratory Cilia in Host-Pathogen Interactions in the Airways. American Journal of Physiology-Lung Cellular and Molecular Physiology, 319, L603-L619. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Gonschior, H., Schmied, C., Van der Veen, R.E., et al. (2022) Nanoscale Segregation of Channel and Barrier Claudins Enables Paracellular Ion Flux. Nature Communications, 13, Article No. 4985. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Ma, J., Rubin, B.K. and Voynow, J.A. (2018) Mucins, Mucus, and Goblet Cells. Chest, 154, 169-176. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Rokicki, W., Rokicki, M., Wojtacha, J., et al. (2016) The Role and Importance of Club Cells (Clara Cells) in the Pathogenesis of Some Respiratory Diseases. Kardiochirurgia i Torakochirurgia Polska, 13, 26-30. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Vielle, N.J., García-Nicolás, O., Oliveira Esteves, B.I., et al. (2019) The Human Upper Respiratory Tract Epithelium Is Susceptible to Flaviviruses. Frontiers in Microbiology, 10, Article 811. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Hewitt, R.J. and Lloyd, C.M. (2021) Regulation of Immune Responses by the Airway Epithelial Cell Landscape. Nature Reviews Immunology, 21, 347-362. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Wanner, A., Salathé, M. and O’Riordan, T.G. (1996) Mucociliary Clearance in the Airways. American Journal of Respiratory and Critical Care Medicine, 154, 1868-1902. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Button, B., Cai, L.-H., Ehre, C., et al. (2012) A Periciliary Brush Promotes the Lung Health by Separating the Mucus Layer from Airway Epithelia. Science, 337, 937-941. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Bustamante-Marin, X.M. and Ostrowski, L.E. (2017) Cilia and Mucociliary Clearance. Cold Spring Harbor Perspectives in Biology, 9, a028241. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Ganz, T. (2002) Antimicrobial Polypeptides in Host Defense of the Respiratory Tract. Journal of Clinical Investigation, 109, 693-697. [Google Scholar] [CrossRef]
|
|
[12]
|
Fahy, J.V. and Dickey, B.F. (2010) Airway Mucus Function and Dysfunction. New England Journal of Medicine, 363, 2233-2247. [Google Scholar] [CrossRef]
|
|
[13]
|
Bardoel, B.W. and Strijp, J.A. (2011) Molecular Battle between Host and Bacterium: Recognition in Innate Immunity. Journal of Molecular Recognition, 24, 1077-1086. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Semeraro, E.F., Marx, L., Mandl, J., et al. (2022) Lactoferricins Impair the Cytosolic Membrane of Escherichia coli within a Few Seconds and Accumulate Inside the Cell. eLife, 11, e72850. [Google Scholar] [CrossRef]
|
|
[15]
|
Wang, J., Xu, H., Wang, D., et al. (2017) Comparison of Pathogen Eradication Rate and Safety of Anti-Bacterial Agents for Bronchitis: A Network Meta-Analysis. Journal of Cellular Biochemistry, 118, 3171-3183. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Chang, A.B., Upham, J.W., Masters, I.B., et al. (2016) Protracted Bacterial Bronchitis: The Last Decade and the Road Ahead. Pediatric Pulmonology, 51, 225-242. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Decramer, M., Janssens, W. and Miravitlles, M. (2012) Chronic Obstructive Pulmonary Disease. The Lancet, 379, 1341-1351. [Google Scholar] [CrossRef]
|
|
[18]
|
Christenson, S.A., Smith, B.M., Bafadhel, M., et al. (2022) Chronic Obstructive Pulmonary Disease. The Lancet, 399, 2227-2242. [Google Scholar] [CrossRef]
|
|
[19]
|
Ferrera, M.C., Labaki, W.W. and Han, M.K. (2021) Advances in Chronic Obstructive Pulmonary Disease. Annual Review of Medicine, 72, 119-134. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Blanchard, A.C. and Waters, V.J. (2019) Microbiology of Cystic Fibrosis Airway Disease. Seminars in Respiratory and Critical Care Medicine, 40, 727-736. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Ferreira-Coimbra, J., Sarda, C. and Rello, J. (2020) Burden of Community-Acquired Pneumonia and Unmet Clinical Needs. Advances in Therapy, 37, 1302-1318. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Veve, M.P. and Wagner, J.L. (2018) Lefamulin: Review of a Promising Novel Pleuromutilin Antibiotic. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 38, 935-946. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Coates, A.R.M., Hu, Y., Holt, J., et al. (2020) Antibiotic Combination Therapy against Resistant Bacterial Infections: Synergy, Rejuvenation and Resistance Reduction. Expert Review of Anti-Infective Therapy, 18, 5-15. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Ho, J. and Ip, M. (2019) Antibiotic-Resistant Community-Acquired Bacterial Pneumonia. Infectious Disease Clinics of North America, 33, 1087-1103. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Ahmad, M. and Khan, A.U. (2019) Global Economic Impact of Antibiotic Resistance: A Review. Journal of Global Antimicrobial Resistance, 19, 313-316. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Munguia, J., LaRock, D.L., Tsunemoto, H., et al. (2017) The Mla Pathway Is Critical for Pseudomonas aeruginosa Resistance to Outer Membrane Permeabilization and Host Innate Immune Clearance. Journal of Molecular Medicine, 95, 1127-1136. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Carniello, V., Peterson, B.W., Van der Mei, H.C., et al. (2018) Physico-Chemistry from Initial Bacterial Adhesion to Surface-Programmed Biofilm Growth. Advances in Colloid and Interface Science, 261, 1-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Chaban, B., Hughes, H.V. and Beeby, M. (2015) The Flagellum in Bacterial Pathogens: For Motility and a Whole Lot More. Seminars in Cell & Developmental Biology, 46, 91-103. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Zhao, A.L., Sun, J.Z. and Liu, Y.P. (2023) Understanding Bacterial Biofilms: From Definition to Treatment Strategies. Frontiers in Cellular and Infection Microbiology, 13, Article 1137947. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Costerton, J.W., Stewart, P.S. and Greenberg, E.P. (1999) Bacterial Biofilms: A Common Cause of Persistent Infections. Science, 284, 1318-1322. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Maurice, N.M., Bedi, B. and Sadikot, R.T. (2018) Pseudomonas aeruginosa Biofilms: Host Response and Clinical Implications in Lung Infections. American Journal of Respiratory Cell and Molecular Biology, 58, 428-439. [Google Scholar] [CrossRef]
|
|
[32]
|
Siegel, S.J. and Weiser, J.N. (2015) Mechanisms of Bacterial Colonization of the Respiratory Tract. Annual Review of Microbiology, 69, 425-444. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Muras, A., Otero-Casal, P., Blanc, V., et al. (2020) Acyl Homoserine Lactone-Mediated Quorum Sensing in the Oral Cavity: A Paradigm Revisited. Scientific Reports, 10, Article No. 9800. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Tabatabaeifar, F., Isaei, E., Kalantar-Neyestanaki, D., et al. (2022) Antimicrobial and Antibiofilm Effects of Combinatorial Treatment Formulations of Anti-Inflammatory Drugs—Common Antibiotics against Pathogenic Bacteria. Pharmaceutics, 15, Article 4. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Weiser, J.N., Ferreira, D.M. and Paton, J.C. (2018) Streptococcus pneumoniae: Transmission, Colonization and Invasion. Nature Reviews Microbiology, 16, 355-367. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Naninck, T., Coutte, L., Mayet, C., et al. (2018) In Vivo Imaging of Bacterial Colonization of the Lower Respiratory Tract in a Baboon Model of Bordetella pertussis Infection and Transmission. Scientific Reports, 8, Article No. 12297. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Karpurapu, M., Lee, Y.G., Qian, Z, et al. (2018) Inhibition of Nuclear Factor of Activated T Cells (NFAT) C3 Activation Attenuates Acute Lung Injury and Pulmonary Edema in Murine Models of Sepsis. Oncotarget, 9, 10606-10620. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Wang, Q.L., Yang, L., Peng, Y., et al. (2019) Ginsenoside Rg1 Regulates SIRT1 to Ameliorate Sepsis-Induced Lung Inflammation and Injury via Inhibiting Endoplasmic Reticulum Stress and Inflammation. Mediators of Inflammation, 2019, Article ID: 6453296. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Viana, F., O’Kane, C.M. and Schroeder, G.N. (2021) Precision-Cut Lung Slices: A Powerful ex Vivo Model to Investigate Respiratory Infectious Diseases. Molecular Microbiology, 117, 578-588. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
He, B., Chen, G. and Zeng, Y. (2016) Three-Dimensional Cell Culture Models for Investigating Human Viruses. Virologica Sinica, 31, 363-379. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Habanjar, O., Diab-Assaf, M., Caldefie-Chezet, F., et al. (2021) 3D Cell Culture Systems: Tumor Application, Advantages, and Disadvantages. International Journal of Molecular Sciences, 22, Article 12200. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Nickerson, C.A., Richter, E.G. and Ott, C.M. (2006) Studying Host-Pathogen Interactions in 3-D: Organotypic Models for Infectious Disease and Drug Development. Journal of Neuroimmune Pharmacology, 2, 26-31. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Eenjes, E., Mertens, T.C.J., Buscop-Van Kempen, M.J., et al. (2018) A Novel Method for Expansion and Differentiation of Mouse Tracheal Epithelial Cells in Culture. Scientific Reports, 8, Article No. 7349. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Hiemstra, P.S., Tetley, T.D. and Janes, S.M. (2019) Airway and Alveolar Epithelial Cells in Culture. European Respiratory Journal, 54, Article 1900742. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Aoki, S., Takezawa, T., Sugihara, H., et al. (2016) Progress in Cell Culture Systems for Pathological Research. Pathology International, 66, 554-562. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Luna, C.M., Sibila, O., Agusti, C., et al. (2009) Animal Models of Ventilator-Associated Pneumonia. European Respiratory Journal, 33, 182-188. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Zhao, M., Lepak, A.J. and Andes, D.R. (2016) Animal Models in the Pharmacokinetic/Pharmacodynamic Evaluation of Antimicrobial Agents. Bioorganic & Medicinal Chemistry, 24, 6390-6400. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Kukavica-Ibrulj, I. and Levesque, R.C. (2008) Animal Models of Chronic Lung Infection with Pseudomonas aeruginosa: Useful Tools for Cystic Fibrosis Studies. Laboratory Animals, 42, 389-412. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Hraiech, S., Papazian, L., Rolain, J.M., et al. (2015) Animal Models of Polymicrobial Pneumonia. Drug Design, Development and Therapy, 9, 3279-3292. [Google Scholar] [CrossRef]
|
|
[50]
|
Bonniaud, P., Fabre, A., Frossard, N., et al. (2018) Optimising Experimental Research in Respiratory Diseases: An ERS Statement. European Respiratory Journal, 51, Article 1702133. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Bielen, K., Jongers, B., Malhotra-Kumar, S., et al. (2017) Animal Models of Hospital-Acquired Pneumonia: Current Practices and Future Perspectives. Annals of Translational Medicine, 5, Article 132. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Robinson, N.B., Krieger, K., Khan, F.M., et al. (2019) The Current State of Animal Models in Research: A Review. International Journal of Surgery, 72, 9-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Reynolds, D. and Kollef, M. (2021) The Epidemiology and Pathogenesis and Treatment of Pseudomonas aeruginosa Infections: An Update. Drugs, 81, 2117-2131. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Loebinger, M.R. and Wilson, R. (2008) Bacterial Pneumonia. Medicine, 36, 285-290. [Google Scholar] [CrossRef]
|
|
[55]
|
Gibson, R.L., Burns, J.L. and Ramsey, B.W. (2003) Pathophysiology and Management of Pulmonary Infections in Cystic Fibrosis. American Journal of Respiratory and Critical Care Medicine, 168, 918-951. [Google Scholar] [CrossRef]
|
|
[56]
|
Diaz, M.H., Shaver, C.M., King, J.D., et al. (2008) Pseudomonas aeruginosa Induces Localized Immunosuppression during Pneumonia. Infection and Immunity, 76, 4414-4421. [Google Scholar] [CrossRef]
|
|
[57]
|
Lyczak, J.B., Cannon, C.L. and Pier, G.B. (2000) Establishment of Pseudomonas aeruginosa Infection: Lessons from a Versatile Opportunist1*Address for Correspondence: Channing Laboratory, 181 Longwood Avenue, Boston, MA 02115, USA. Microbes and Infection, 2, 1051-1060. [Google Scholar] [CrossRef]
|
|
[58]
|
Kerr, K.G. and Snelling, A.M. (2009) Pseudomonas aeruginosa: A Formidable and Ever-Present Adversary. Journal of Hospital Infection, 73, 338-344. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Wu, D.C., Chan, W.W., Metelitsa, A.I., et al. (2011) Skin Infection Clinical Features, Epidemiology, and Management. American Journal of Clinical Dermatology, 12, 157-169. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Wood, S.J., Kuzel, T.M. and Shafikhani, S.H. (2023) Infections, Animal Modeling, and Therapeutics. Cells, 12, Article 199. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Williams, B.J., Dehnbostel, J. and Blackwell, T.S. (2010) Pseudomonas aeruginosa: Host Defence in Lung Diseases. Respirology, 15, 1037-1056. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Gellatly, S.L. and Hancock, R.E.W. (2013) Pseudomonas aeruginosa: New Insights into Pathogenesis and Host Defenses. Pathogens and Disease, 67, 159-173. [Google Scholar] [CrossRef]
|
|
[63]
|
Mendes, O.R. (2023) The Challenge of Pulmonary Pseudomonas aeruginosa Infection: How to Bridge Research and Clinical Pathology. In: Bagchi, D., Das, A. and Downs, B.W., Eds., Viral, Parasitic, Bacterial, and Fungal Infections, Academic Press, Cambridge, MA, 591-608. [Google Scholar] [CrossRef]
|
|
[64]
|
Moore, N.M. and Flaws, M.L. (2011) Antimicrobial Resistance Mechanisms in Pseudomonas aeruginosa. Clinical Laboratory Science, 24, 47-51. [Google Scholar] [CrossRef]
|
|
[65]
|
Rosenthal, V.D., Duszynska, W., Ider, B.-E., et al. (2021) International Nosocomial Infection Control Consortium (INICC) Report, Data Summary of 45 Countries for 2013-2018, Adult and Pediatric Units, Device-Associated Module. American Journal of Infection Control, 49, 1267-1274. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Moradali, M.F., Ghods, S. and Rehm, B.H.A. (2017) Pseudomonas aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. Frontiers in Cellular and Infection Microbiology, 7, Article 39. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Ho, D.-K., Nichols, B.L.B., Edgar, K.J, et al. (2019) Challenges and Strategies in Drug Delivery Systems for Treatment of Pulmonary Infections. European Journal of Pharmaceutics and Biopharmaceutics, 144, 110-124. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Diep, B.A., Le, V.T.M., Visram, Z.C., et al. (2016) Improved Protection in a Rabbit Model of Community-Associated Methicillin-Resistant Staphylococcus aureus Necrotizing Pneumonia Upon Neutralization of Leukocidins in Addition to Alpha-Hemolysin. Antimicrobial Agents and Chemotherapy, 60, 6333-6340. [Google Scholar] [CrossRef]
|
|
[69]
|
Kurahashi, K., Kajikawa, O., Sawa, T., et al. (1999) Pathogenesis of Septic Shock in Pseudomonas aeruginosa Pneumonia. Journal of Clinical Investigation, 104, 743-750. [Google Scholar] [CrossRef]
|
|
[70]
|
Li Bassi, G., Rigol, M., Marti, J.-D., et al. (2014) A Novel Porcine Model of Ventilator-Associated Pneumonia Caused by Oropharyngeal Challenge with Pseudomonas aeruginosa. Anesthesiology, 120, 1205-1215. [Google Scholar] [CrossRef]
|
|
[71]
|
Moser, K.M., Maurer, J., Jassy, L., et al. (1982) Sensitivity, Specificity, and Risk of Diagnostic Procedures in a Canine Model of Streptococcus pneumoniae Pneumonia. American Review of Respiratory Disease, 125, 436-442.
|
|
[72]
|
Thomassen, M.J., Klinger, J.D., Winnie, G.B., et al. (1984) Pulmonary Cellular Response to Chronic Irritation and Chronic Pseudomonas aeruginosa Pneumonia in Cats. Infection and Immunity, 45, 741-747. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Kukavica-Ibrulj, I., Facchini, M., Cigana, C., et al. (2014) Assessing Pseudomonas aeruginosa Virulence and the Host Response Using Murine Models of Acute and Chronic Lung Infection. Methods in Molecular Biology, 1149, 757-771. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Munder, A. and Tummler, B. (2014) Assessing Pseudomonas Virulence Using Mammalian Models: Acute Infection Model. Methods in Molecular Biology, 1149, 773-791. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Mazzolini, R., Rodríguez-Arce, I., Fernández-Barat, L., et al. (2023) Engineered Live Bacteria Suppress Pseudomonas aeruginosa Infection in Mouse Lung and Dissolve Endotracheal-Tube Biofilms. Nature Biotechnology, 41, 1089-1098. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Cash, H.A., Woods, D.E., McCullough, B., et al. (1979) A Rat Model of Chronic Respiratory Infection with Pseudomonas aeruginosa. American Review of Respiratory Disease, 119, 453-459.
|
|
[77]
|
Nakamura, S., Iwanaga, N., Seki, M., et al. (2016) Toll-Like Receptor 4 Agonistic Antibody Promotes Host Defense against Chronic Pseudomonas aeruginosa Lung Infection in Mice. Infection and Immunity, 84, 1986-1993. [Google Scholar] [CrossRef]
|
|
[78]
|
Van Heeckeren, A.M. and Schluchter, M.D. (2002) Murine Models of Chronic Pseudomonas aeruginosa Lung Infection. Laboratory Animals, 36, 291-312. [Google Scholar] [CrossRef] [PubMed]
|
|
[79]
|
Yanagihara, K., Tomono, K., Sawai, T., et al. (1997) Effect of Clarithromycin on Lymphocytes in Chronic Respiratory Pseudomonas aeruginosa Infection. American Journal of Respiratory and Critical Care Medicine, 155, 337-342. [Google Scholar] [CrossRef] [PubMed]
|
|
[80]
|
Hraiech, S., Bregeon, F., Brunel, J.M., et al. (2012) Antibacterial Efficacy of Inhaled Squalamine in a Rat Model of Chronic Pseudomonas aeruginosa Pneumonia. Journal of Antimicrobial Chemotherapy, 67, 2452-2458. [Google Scholar] [CrossRef] [PubMed]
|
|
[81]
|
Growcott, E.J., Coulthard, A., Amison, R., et al. (2011) Characterisation of a Refined Rat Model of Respiratory Infection with Pseudomonas aeruginosa and the Effect of Ciprofloxacin. Journal of Cystic Fibrosis, 10, 166-174. [Google Scholar] [CrossRef] [PubMed]
|
|
[82]
|
Allewelt, M., Tuomanen, E.I., Coleman, F.T., et al. (2000) Acquisition of Expression of the Pseudomonas aeruginosa ExoU Cytotoxin Leads to Increased Bacterial Virulence in a Murine Model of Acute Pneumonia and Systemic Spread. Infection and Immunity, 68, 3998-4004. [Google Scholar] [CrossRef]
|
|
[83]
|
Fothergill, J.L., Neill, D.R., Loman, N., et al. (2014) Pseudomonas aeruginosa Adaptation in the Nasopharyngeal Reservoir Leads to Migration and Persistence in the Lungs. Nature Communications, 5, Article No. 4780. [Google Scholar] [CrossRef] [PubMed]
|
|
[84]
|
Morris, A.E., Liggitt, H.D., Hawn, T.R., et al. (2009) Role of Toll-Like Receptor 5 in the Innate Immune Response to Acute P. aeruginosa Pneumonia. American Journal of Physiology-Lung Cellular and Molecular Physiology, 297, L1112-L1119. [Google Scholar] [CrossRef] [PubMed]
|
|
[85]
|
Yu, H., Hanes, M., Chrisp, C.E., et al. (1998) Microbial Pathogenesis in Cystic Fibrosis: Pulmonary Clearance of Mucoid Pseudomonas aeruginosa and Inflammation in a Mouse Model of Repeated Respiratory Challenge. Infection and Immunity, 66, 280-288. [Google Scholar] [CrossRef]
|
|
[86]
|
Facchini, M., De Fino, I., Riva, C., et al. (2014) Long Term Chronic Pseudomonas aeruginosa Airway Infection in Mice. Journal of Visualized Experiments, No. 85, Article 51019.
|
|
[87]
|
Hoiby, N., Krogh Johansen, H., Moser, C., et al. (2001) Pseudomonas aeruginosa and the in Vitro and in Vivo Biofilm Mode of Growth. Microbes and Infection, 3, 23-35. [Google Scholar] [CrossRef]
|
|
[88]
|
Boyd, R.L., Ramphal, R., Rice, R., et al. (1983) Chronic Colonization of Rat Airways with Pseudomonas aeruginosa. Infection and Immunity, 39, 1403-1410. [Google Scholar] [CrossRef] [PubMed]
|
|
[89]
|
Schroeder, T.H., Reiniger, N., Meluleni, G., et al. (2001) Transgenic Cystic Fibrosis Mice Exhibit Reduced Early Clearance of Pseudomonas aeruginosa from the Respiratory Tract. The Journal of Immunology, 166, 7410-7418. [Google Scholar] [CrossRef] [PubMed]
|
|
[90]
|
Thomsen, K., Christophersen, L., Bjarnsholt, T., et al. (2016) Anti-Pseudomonas aeruginosa IgY Antibodies Augment Bacterial Clearance in a Murine Pneumonia Model. Journal of Cystic Fibrosis, 15, 171-178. [Google Scholar] [CrossRef] [PubMed]
|
|
[91]
|
Cheung, D.O., Halsey, K. and Speert, D.P. (2000) Role of Pulmonary Alveolar Macrophages in Defense of the Lung against Pseudomonas aeruginosa. Infection and Immunity, 68, 4585-4592. [Google Scholar] [CrossRef]
|
|
[92]
|
Cui, Z., Han, D., Sun, X., et al. (2015) Mannose-Modified Chitosan Microspheres Enhance OprF-OprI-Mediated Protection of Mice against Pseudomonas aeruginosa Infection via Induction of Mucosal Immunity. Applied Microbiology and Biotechnology, 99, 667-680. [Google Scholar] [CrossRef] [PubMed]
|
|
[93]
|
De Vrankrijker, A.M., Wolfs, T.F., Ciofu, O., et al. (2009) Respiratory Syncytial Virus Infection Facilitates Acute Colonization of Pseudomonas aeruginosa in Mice. Journal of Medical Virology, 81, 2096-2103. [Google Scholar] [CrossRef] [PubMed]
|
|
[94]
|
Kaushal, D., Miller, M.A., Stabenow, J.M., et al. (2012) Visualization of Murine Intranasal Dosing Efficiency Using Luminescent Francisella tularensis: Effect of Instillation Volume and Form of Anesthesia. PLOS ONE, 7, e31359. [Google Scholar] [CrossRef] [PubMed]
|
|
[95]
|
Sordelli, D.O., Cerquetti, M.C. and Hooke, A.M. (1985) Replication Rate of Pseudomonas aeruginosa in the Murine Lung. Infection and Immunity, 50, 388-391. [Google Scholar] [CrossRef] [PubMed]
|
|
[96]
|
Evans, S.E., Tuvim, M.J., Zhang, J., et al. (2010) Host Lung Gene Expression Patterns Predict Infectious Etiology in a Mouse Model of Pneumonia. Respiratory Research, 11, Article No. 101. [Google Scholar] [CrossRef] [PubMed]
|
|
[97]
|
Iizawa, Y., Nishi, T., Kondo, M., et al. (1991) Examination of Host Defense Factors Responsible for Experimental Chronic Respiratory Tract Infection Caused by Klebsiella pneumoniae in Mice. Microbiology and Immunology, 35, 615-622. [Google Scholar] [CrossRef] [PubMed]
|
|
[98]
|
Garcia-Medina, R., Dunne, W.M., Singh, P.K., et al. (2005) Pseudomonas aeruginosa Acquires Biofilm-Like Properties within Airway Epithelial Cell. Infection and Immunity, 73, 8298-8305. [Google Scholar] [CrossRef]
|
|
[99]
|
Fleiszig, S.M., Evans, D.J., Do, N., et al. (1997) Epithelial Cell Polarity Affects Susceptibility to Pseudomonas aeruginosa Invasion and Cytotoxicity. Infection and Immunity, 65, 2861-2867. [Google Scholar] [CrossRef] [PubMed]
|
|
[100]
|
Darling, K.E.A., Dewar, A. and Evans, T.J. (2004) Role of the Cystic Fibrosis Transmembrane Conductance Regulator in Internalization of Pseudomonas aeruginosa by Polarized Respiratory Epithelial Cells. Cellular Microbiology, 6, 521-533. [Google Scholar] [CrossRef] [PubMed]
|
|
[101]
|
Zhu, P., Bu, H., Tan, S., et al. (2020) A Novel Cochlioquinone Derivative, CoB1, Regulates Autophagy in Pseudomonas aeruginosa Infection through the PAK1/Akt1/MTOR Signaling Pathway. The Journal of Immunology, 205, 1293-1305. [Google Scholar] [CrossRef] [PubMed]
|
|
[102]
|
Psoter, K.J., De Roos, A.J., Mayer, J.D., et al. (2015) Fine Particulate Matter Exposure and Initial Pseudomonas aeruginosa Acquisition in Cystic Fibrosis. Annals of the American Thoracic Society, 12, 385-391. [Google Scholar] [CrossRef]
|
|
[103]
|
Augustin, D.K., Heimer, S.R., Tam, C., et al. (2011) Role of Defensins in Corneal Epithelial Barrier Function against Pseudomonas aeruginosa Traversal. Infection and Immunity, 79, 595-605. [Google Scholar] [CrossRef]
|
|
[104]
|
Soong, G., Parker, D., Magargee, M., et al. (2008) The Type III Toxins of Pseudomonas aeruginosa Disrupt Epithelial Barrier Function. Journal of Bacteriology, 190, 2814-2821. [Google Scholar] [CrossRef]
|
|
[105]
|
Kroken, A.R., Gajenthra Kumar, N., Yahr, T.L., et al. (2022) Exotoxin S Secreted by Internalized Pseudomonas aeruginosa Delays Lytic Host Cell Death. PLOS Pathogens, 18, e1010306. [Google Scholar] [CrossRef] [PubMed]
|
|
[106]
|
Okuda, J., Hayashi, N., Okamoto, M., et al. (2010) Translocation of Pseudomonas aeruginosa from the Intestinal Tract Is Mediated by the Binding of ExoS to an Na,K-ATPase Regulator, FXYD3. Infection and Immunity, 78, 4511-4522. [Google Scholar] [CrossRef]
|
|
[107]
|
Zulianello, L., Canard, C., Köhler, T., et al. (2006) Rhamnolipids Are Virulence Factors That Promote Early Infiltration of Primary Human Airway Epithelia by Pseudomonas aeruginosa. Infection and Immunity, 74, 3134-3147. [Google Scholar] [CrossRef]
|
|
[108]
|
Liu, J., Chen, X., Dou, M., et al. (2019) Particulate Matter Disrupts Airway Epithelial Barrier via Oxidative Stress to Promote Pseudomonas aeruginosa Infection. Journal of Thoracic Disease, 11, 2617-2627. [Google Scholar] [CrossRef] [PubMed]
|