关于梯度 h-Ricci 孤立子的刚性研究
Study on the Rigidity of Gradient h-RicciSolitons
摘要: 本文研究了梯度 h-Ricci 孤立子的数量曲率有上界时,数量曲率是常数的结果,同时,证明了在
一定的积分条件下,梯度 h-Ricci 孤立子的数量曲率消失的结果。
Abstract:
In this article, we study the results that the scalar curvature is constant when the scalar curvature of a gradient h-Ricci soliton has an upper bound. It also proved that
under some integral conditions, the scalar curvature of gradient h-Ricci solitons must
be vanished.
参考文献
|
[1]
|
Gomes, J.N., Wang, Q.L. and Xia, C.Y. (2017) On the h-Almost Ricci Soliton. Journal of
Geometry and Physics, 114, 216-222. [Google Scholar] [CrossRef]
|
|
[2]
|
Barros, A. and Ribeiro Jr., E. (2014) Characterizations and Integral Formulas for Generalized
Quasi-Einstein Metrics. Bulletin of the Brazilian Mathematical Society, New Series, 45, 325-
341.[CrossRef]
|
|
[3]
|
Cunha, A.W. and Siddiqi, M.D. (2023) Characterizations of Gradient h-Almost Yamabe Solitons.
Results in Mathematics, 78, Article No. 47. [Google Scholar] [CrossRef]
|
|
[4]
|
Caminha, A., Sousa, P. and Camargo, F. (2010) Complete Foliations of Space Forms by
Hypersurfaces. Bulletin of the Brazilian Mathematical Society, 41, 339-353.[CrossRef]
|
|
[5]
|
Grigor'yan, A. (1999) Analytic and Geometric Background of Recurrence and Nonexplosion
of the Brownian Motion on Riemannian Manifolds. Bulletin of the American Mathematical
Society, 36, 135-249.[CrossRef]
|
|
[6]
|
Schoen, R. and Yau, S.T. (1994) Lectures on Differental Geometry (Conference Proceedings
and Lecture Notes in Geometry and Topology). International Press of Boston, Somerville.
|