|
[1]
|
黄学敏. 上市公司财务欺诈及其监管研究[D]: [博士学位论文]. 厦门: 厦门大学, 2006.
|
|
[2]
|
杨芳, 刘端, 汪子文. 现金流量指标在上市公司财务欺诈识别中应用的实证研究[J]. 金融经济(理论版), 2006(8): 122-124.
|
|
[3]
|
袁先智, 周云鹏, 严诚幸, 等. 公司财务欺诈预警与风险特征筛选的新方法: 基于人工智能算法[C]//中国管理现代化研究会, 复旦管理学奖励基金会. 第十五届(2020)中国管理学年会论文集: 2020年卷. 北京: 中国管理现代化研究会, 2020: 1-16.
|
|
[4]
|
陈孝新. 上市公司财务欺诈的识别模型[J]. 统计与决策, 2005(13): 44-45.
|
|
[5]
|
余玉苗, 吕凡. 财务舞弊风险的识别——基于财务指标增量信息的研究视角[J]. 经济评论, 2010(4): 124-130.
|
|
[6]
|
熊芮卿. 基于时序性信息的财务报表欺诈识别[D]: [硕士学位论文]. 成都: 西南交通大学, 2013.
|
|
[7]
|
Al-Hashedi, K.G. and Magalingam, P. (2021) Financial Fraud Detection Applying Data Mining Techniques: A Comprehensive Review from 2009 to 2019. Computer Science Review, 40, Article ID: 100402. [Google Scholar] [CrossRef]
|
|
[8]
|
Persons, O.S. (1995) Using Financial Statement Data to Identify Factors Associated with Fraudulent Financial Reporting. Journal of Applied Business Research (JABR), 11, 38-46. [Google Scholar] [CrossRef]
|
|
[9]
|
Deng, Q. (2009) Application of Support Vector Machine in the Detection of Fraudulent Financial Statements. 2009 4th International Conference on Computer Science & Education, Nanning, 25-28 July 2009, 1056-1059. [Google Scholar] [CrossRef]
|
|
[10]
|
Li, X. and Ying, S. (2010) Lib-SVMs Detection Model of Regulating-Profits Financial Statement Fraud Using Data of Chinese Listed Companies. 2010 International Conference on E-Product E-Service and E-Entertainment, Henan, 7-9 November 2010, 1-4. [Google Scholar] [CrossRef]
|
|
[11]
|
Moepya, S.O., Nelwamondo, F.V. and Van Der Walt, C. (2014) A Support Vector Machine Approach to Detect Financial Statement Fraud in South Africa: A First Look. Intelligent Information and Database Systems: 6th Asian Conference, ACIIDS 2014, Bangkok, 7-9 April 2014, 42-51. [Google Scholar] [CrossRef]
|
|
[12]
|
Yao, J., Pan, Y., Yang, S., et al. (2019) Detecting Fraudulent Financial Statements for the Sustainable Development of the Socio-Economy in China: A Multi-Analytic Approach. Sustainability, 11, Article 1579. [Google Scholar] [CrossRef]
|
|
[13]
|
El-Bannany, M., Dehghan, A.H. and Khedr, A.M. (2021) Prediction of Financial Statement Fraud Using Machine Learning Techniques in UAE. 2021 18th International Multi-Conference on Systems, Signals & Devices (SSD), Monastir, 22-25 March 2021, 649-654. [Google Scholar] [CrossRef]
|
|
[14]
|
Chi, D.J., Chu, C.C. and Chen, D. (2019) Applying Support Vector Machine, C5.0, and CHAID to the Detection of Financial Statements Frauds. Intelligent Computing Methodologies: 15th International Conference, ICIC 2019, Nanchang, 3-6 August 2019, 327-336. [Google Scholar] [CrossRef]
|
|
[15]
|
Fanning, K.M. and Cogger, K.O. (1998) Neural Network Detection of Management Fraud Using Published Financial Data. Intelligent Systems in Accounting, Finance & Management, 7, 21-41. [Google Scholar] [CrossRef]
|
|
[16]
|
Rizki, A.A., Surjandari, I. and Wayasti, R.A. (2017) Data Mining Application to Detect Financial Fraud in Indonesia’s Public Companies. 2017 3rd International Conference on Science in Information Technology (ICSITech), Bandung, 25-26 October 2017, 206-211. [Google Scholar] [CrossRef]
|
|
[17]
|
Lin, C.C., Chiu, A.A., Huang, S.Y., et al. (2015) Detecting the Financial Statement Fraud: The Analysis of the Differences between Data Mining Techniques and Experts’ Judgments. Knowledge-Based Systems, 89, 459-470. [Google Scholar] [CrossRef]
|
|
[18]
|
Nawaiseh, A.K., Abbod, M.F. and Itagaki, T. (2020) Financial Statement Audit Using Support Vector Machines, Artificial Neural Networks and K-Nearest Neighbor: An Empirical Study of UK and Ireland. International Journal of Simulation—Systems, Science & Technology, 21, 1-6. [Google Scholar] [CrossRef]
|
|
[19]
|
范斌, 宁德军, 卢俊哲, 等. 基于加权KNN与代价敏感多分支深度神经网络的审计数据异常检测[J]. 计算机应用与软件, 2024, 41(2): 100-108.
|
|
[20]
|
Perols, J. (2011) Financial Statement Fraud Detection: An Analysis of Statistical and Machine Learning Algorithms. Auditing: A Journal of Practice & Theory, 30, 19-50. [Google Scholar] [CrossRef]
|
|
[21]
|
Song, X.P., Hu, Z.H., Du, J.G., et al. (2014) Application of Machine Learning Methods to Risk Assessment of Financial Statement Fraud: Evidence from China. Journal of Forecasting, 33, 611-626. [Google Scholar] [CrossRef]
|
|
[22]
|
Hajek, P. and Henriques, R. (2017) Mining Corporate Annual Reports for Intelligent Detection of Financial Statement Fraud—A Comparative Study of Machine Learning Methods. Knowledge-Based Systems, 128, 139-152. [Google Scholar] [CrossRef]
|
|
[23]
|
Ye, H., Xiang, L. and Gan, Y. (2019) Detecting Financial Statement Fraud Using Random Forest with SMOTE. IOP Conference Series: Materials Science and Engineering, 612, Article ID: 052051. [Google Scholar] [CrossRef]
|
|
[24]
|
Liu, Z., Ye, R. and Ye, R. (2021) Detecting Financial Statement Fraud with Interpretable Machine Learning. [Google Scholar] [CrossRef]
|
|
[25]
|
Ali, A.A., Khedr, A.M., El-Bannany, M., et al. (2023) A Powerful Predicting Model for Financial Statement Fraud Based on Optimized XGBoost Ensemble Learning Technique. Applied Sciences, 13, Article 2272. [Google Scholar] [CrossRef]
|
|
[26]
|
Khedr, A.M., El Bannany, M. and Kanakkayil, S. (2021) An Ensemble Model for Financial Statement Fraud Detection. Journal of Universal Computer Science, 2, e69590. [Google Scholar] [CrossRef]
|
|
[27]
|
Achakzai, M.A.K. and Peng, J. (2023) Detecting Financial Statement Fraud Using Dynamic Ensemble Machine Learning. International Review of Financial Analysis, 89, Article ID: 102827. [Google Scholar] [CrossRef]
|
|
[28]
|
Dong, W., Liao, S. and Liang, L. (2016) Financial Statement Fraud Detection Using Text Mining: A Systemic Functional Linguistics Theory Perspective. Proceeding of the 20th Pacific Asia Conference on Information Systems, Chiayi, June 27-July 1 2016, 188.
|
|
[29]
|
Nießner, T., Gross, D.H. and Schumann, M. (2022) Evidential Strategies in Financial Statement Analysis: A Corpus Linguistic Text Mining Approach to Bankruptcy Prediction. Journal of Risk and Financial Management, 15, Article 459. [Google Scholar] [CrossRef]
|
|
[30]
|
程双双, 谷晓燕, 王兴芬. 基于非平衡MDA文本数据的财务欺诈识别[J]. 管理现代化, 2024(1): 121-127.
|
|
[31]
|
刘华玲, 陶龙, 曹亚珂, 等. 基于文本数据挖掘的上市公司财务欺诈识别研究[C]//中国管理现代化研究会, 复旦管理学奖励基金会. 第十八届(2023)中国管理学年会暨“一带一路”十周年研讨会论文集: 2023年卷. 上海: 上海对外经贸大学统计与信息学院, 2023: 1-8.
|
|
[32]
|
Craja, P., Kim, A. and Lessmann, S. (2020) Deep Learning for Detecting Financial Statement Fraud. Decision Support Systems, 139, Article ID: 113421. [Google Scholar] [CrossRef]
|
|
[33]
|
刘会醒, 程建华. 基于集成学习和文本分析的财务欺诈识别研究[J]. 福建商学院学报, 2023(4): 42-52.
|
|
[34]
|
陈朝焰, 韩冬梅, 吴馨一. 融合新闻文本和时序信息的上市公司财务欺诈预警[J]. 财会月刊, 2023, 44(12): 30-39.
|
|
[35]
|
李爱华, 王迪文, 续维佳, 等. 基于多数据源融合的创业板上市公司财务造假异常检测[J]. 数据分析与知识发现, 2023, 7(5): 33-47.
|
|
[36]
|
肖庆兰. 财务指标与文本相结合的上市公司财务欺诈识别[D]: [硕士学位论文]. 南昌: 南昌江西财经大学, 2022.
|
|
[37]
|
Islam, S., Haque, M.M. and Karim, A.N.M.R. (2024) A Rule-Based Machine Learning Model for Financial Fraud Detection. International Journal of Electrical & Computer Engineering, 14, 759-771. [Google Scholar] [CrossRef]
|
|
[38]
|
Innan, N., Sawaika, A., Dhor, A., et al. (2024) Financial Fraud Detection Using Quantum Graph Neural Networks. Quantum Machine Intelligence, 6, Article No. 7. [Google Scholar] [CrossRef]
|
|
[39]
|
Wu, B., Chao, K.M. and Li, Y. (2024) Heterogeneous Graph Neural Networks for Fraud Detection and Explanation in Supply Chain Finance. Information Systems, 121, Article ID: 102335. [Google Scholar] [CrossRef]
|
|
[40]
|
Munteanu, V., Zuca, M.R., Horaicu, A., et al. (2024) Auditing the Risk of Financial Fraud Using the Red Flags Technique. Applied Sciences, 14, Article 757. [Google Scholar] [CrossRef]
|
|
[41]
|
Kanaparthi, V. (2024) Transformational Application of Artificial Intelligence and Machine Learning in Financial Technologies and Financial Services: A Bibliometric Review. International Journal of Engineering and Advanced Technology, 13, 71-77. [Google Scholar] [CrossRef]
|