|
[1]
|
Tanase, D.M., Gosav, E.M., Costea, C.F., Ciocoiu, M., Lacatusu, C.M., Maranduca, M.A., Ouatu, A. and Floria, M. (2020) The Intricate Relationship between Type 2 Diabetes Mellitus (T2DM), Insulin Resistance (IR), and Nonalcoholic Fatty Liver Disease (NAFLD). Journal of Diabetes Research, 2020, Article ID: 3920196. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
National Workshop on Fatty Liver and Alcoholic Liver Disease, Chinese Society of Hepatology, Chinese Medical Association, Fatty Liver Expert Committee, Chinese Medical Doctor Association (2018) Guidelines of Prevention and Treatment for Nonalcoholic Fatty Liver Disease: A 2018 Update. Journal of Clinical Hepatology, 34, 947-957.
|
|
[3]
|
Riazi, K., Azhari, H., Charette, J.H., Underwood, F.E., King, J.A., Afshar, E.E., Swain, M.G., Congly, S.E., Kaplan, G.G. and Shaheen, A.A. (2022) The Prevalence and Incidence of NAFLD Worldwide: A Systematic Review and Meta-Analysis. The Lancet Gastroenterology & Hepatology, 7, 851-861. [Google Scholar] [CrossRef]
|
|
[4]
|
Le, M.H., Le, D.M., Baez, T.C., Wu, Y., Ito, T., Lee, E.Y., Lee, K., Stave, C.D., Henry, L., Barnett, S.D., Cheung, R. and Nguyen, M.H. (2023) Global Incidence of Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis of 63 Studies and 1,201,807 Persons. Journal of Hepatology, 79, 287-295. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Byrne, C.D. and Targher, G. (2015) NAFLD: A Multisystem Disease. Journal of Hepatology, 62, S47-S64. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Bunchorntavakul, C. and Reddy, K.R. (2020) Review Article: Malnutrition/Sarcopenia and Frailty in Patients with Cirrhosis. Alimentary Pharmacology & Therapeutics, 51, 64-77. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Cruz-Jentoft, A.J., Bahat, G., Bauer, J., Boirie, Y., BruyÈRe, O., Cederholm, T., Cooper, C., Landi, F., Rolland, Y., Sayer, A.A., Schneider, S.M., Sieber, C.C., Topinkova, E., Vandewoude, M., Visser, M., Zamboni, M. and Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2 (2019) Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age and Ageing, 48, 16-31. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Papadopoulou, S.K. (2020) Sarcopenia: A Contemporary Health Problem among Older Adult Populations. Nutrients, 12, Article No. 1293. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Yeung, S.S.Y., Reijnierse, E.M., Pham, V.K., Trappenburg, M.C., Lim, W.K., Meskers, C.G.M. and Maier, A.B. (2019) Sarcopenia and Its Association with Falls and Fractures in Older Adults: A Systematic Review and Meta-Analysis. Journal of Cachexia, Sarcopenia and Muscle, 10, 485-500. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Kornicka, K., Szłapka-Kosarzewska, J., Śmieszek, A. and Marycz, K. (2019) 5-Azacytydine and Resveratrol Reverse Senescence and Ageing of Adipose Stem Cells via Modulation of Mitochondrial Dynamics and Autophagy. Journal of Cellular and Molecular Medicine, 23, 237-259. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Prasun, P. (2020) Mitochondrial Dysfunction in Metabolic Syndrome. Biochimica et Biophysica Acta. Molecular Basis of Disease, 1866, Article ID: 165838. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Eslam, M., Sanyal, A.J., George, J. and International Consensus Panel (2020) MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology, 158, 1999-2014.E1. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Park, H.S., Song, J.W., Park, J.H., Lim, B.K., Moon, O.S., Son, H.Y., Lee, J.H., Gao, B., Won, Y.S. and Kwon, H.J. (2021) TXNIP/VDUP1 Attenuates Steatohepatitis via Autophagy and Fatty Acid Oxidation. Autophagy, 17, 2549-2564. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zhou, R., Yazdi, A.S., Menu, P. and Tschopp, J. (2011) A Role for Mitochondria in NLRP3 Inflammasome Activation. Nature, 469, 221-225. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Ueno, T. and Komatsu, M. (2017) Autophagy in the Liver: Functions in Health and Disease. Nature Reviews. Gastroenterology & Hepatology, 14, 170-184. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Filali-Mouncef, Y., Hunter, C., Roccio, F., Zagkou, S., Dupont, N., Primard, C., Proikas-Cezanne, T. and Reggiori, F. (2022) The Ménage à Trois of Autophagy, Lipid Droplets and Liver Disease. Autophagy, 18, 50-72. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Gonzalez, A., Simon, F., Achiardi, O., Vilos, C., Cabrera, D. and Cabello-Verrugio, C. (2021) The Critical Role of Oxidative Stress in Sarcopenic Obesity. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 4493817. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Vance, J.E. and Tasseva, G. (2013) Formation and Function of Phosphatidylserine and Phosphatidylethanolamine in Mammalian Cells. Biochimica et Biophysica Acta, 1831, 543-554. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Marušić, M., Paić, M., Knobloch, M. and Liberati Pršo, A.M. (2021) NAFLD, Insulin Resistance, and Diabetes Mellitus Type 2. Canadian Journal of Gastroenterology & Hepatology, 2021, Article ID: 6613827. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Lonardo, A., Nascimbeni, F., Maurantonio, M., Marrazzo, A., Rinaldi, L. and Adinolfi, L.E. (2017) Nonalcoholic Fatty Liver Disease: Evolving Paradigms. World Journal of Gastroenterology, 23, 6571-6592. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Lee, D.Y., Park, J.K., Hur, K.Y. and Um, S.H. (2018) Association between Nonalcoholic Fatty Liver Disease and Bone Mineral Density in Postmenopausal Women. Climacteric: The Journal of the International Menopause Society, 21, 498-501. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Xue, L., He, J., Gao, N., Lu, X., Li, M., Wu, X., Liu, Z., Jin, Y., Liu, J., Xu, J. and Geng, Y. (2017) Probiotics May Delay the Progression of Nonalcoholic Fatty Liver Disease by Restoring the Gut Microbiota Structure and Improving Intestinal Endotoxemia. Scientific Reports, 7, Article No. 45176. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Russell, S.T., Rajani, S., Dhadda, R.S. and Tisdale, M.J. (2009) Mechanism of Induction of Muscle Protein Loss by Hyperglycaemia. Experimental Cell Research, 315, 16-25. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Pereira, S., Marliss, E.B., Morais, J.A., Chevalier, S. and Gougeon, R. (2008) Insulin Resistance of Protein Metabolism in Type 2 Diabetes. Diabetes, 57, 56-63. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Thiebaud, D., Jacot, E., DeFronzo, R.A., Maeder, E., Jequier, E. and Felber, J.P. (1982) The Effect of Graded Doses of Insulin on Total Glucose Uptake, Glucose Oxidation, and Glucose Storage in Man. Diabetes, 31, 957-963. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Santanasto, A.J., Goodpaster, B.H., Kritchevsky, S.B., Miljkovic, I., Satterfield, S., Schwartz, A.V., Cummings, S.R., Boudreau, R.M., Harris, T.B. and Newman, A.B. (2017) Body Composition Remodeling and Mortality: The Health Aging and Body Composition Study. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 72, 513-519. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Scott, D., Trbojevic, T., Skinner, E., Clark, R.A., Levinger, P., Haines, T.P., Sanders, K.M. and Ebeling, P.R. (2015) Associations of Calf Inter-and Intra-Muscular Adipose Tissue with Cardiometabolic Health and Physical Function in Community-Dwelling Older Adults. Journal of Musculoskeletal & Neuronal Interactions, 15, 350-357.
|
|
[28]
|
Fink, L.N., Costford, S.R., Lee, Y.S., Jensen, T.E., Bilan, P.J., Oberbach, A., Blüher, M., Olefsky, J.M., Sams, A. and Klip, A. (2014) Pro-Inflammatory Macrophages Increase in Skeletal Muscle of High Fat-Fed Mice and Correlate with Metabolic Risk Markers in Humans. Obesity (Silver Spring, Md.), 22, 747-757. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Thursby, E. and Juge, N. (2017) Introduction to the Human Gut Microbiota. The Biochemical Journal, 474, 1823-1836. [Google Scholar] [CrossRef]
|
|
[30]
|
Hu, H., Lin, A., Kong, M., Yao, X., Yin, M., Xia, H., Ma, J. and Liu, H. (2020) Intestinal Microbiome and NAFLD: Molecular Insights and Therapeutic Perspectives. Journal of Gastroenterology, 55, 142-158. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Quesada-Vázquez, S., Bone, C., Saha, S., Triguero, I., Colom-Pellicer, M., Aragonès, G., Hildebrand, F., Del Bas, J.M., Caimari, A., Beraza, N. and Escoté, X. (2022) Microbiota Dysbiosis and Gut Barrier Dysfunction Associated with Non-Alcoholic Fatty Liver Disease Are Modulated by a Specific Metabolic Cofactors’ Combination. International Journal of Molecular Sciences, 23, Article No. 13675. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Wang, B., Jiang, X., Cao, M., Ge, J., Bao, Q., Tang, L., Chen, Y. and Li, L. (2016) Altered Fecal Microbiota Correlates with Liver Biochemistry in Nonobese Patients with Non-Alcoholic Fatty Liver Disease. Scientific Reports, 6, Article No. 32002. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Rau, M., Rehman, A., Dittrich, M., Groen, A.K., Hermanns, H.M., Seyfried, F., Beyersdorf, N., Dandekar, T., Rosenstiel, P. and Geier, A. (2018) Fecal SCFAs and SCFA-Producing Bacteria in Gut Microbiome of Human NAFLD as a Putative Link to Systemic T-Cell Activation and Advanced Disease. United European Gastroenterology Journal, 6, 1496-1507. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Sinal, C.J., Tohkin, M., Miyata, M., Ward, J.M., Lambert, G. and Gonzalez, F.J. (2000) Targeted Disruption of the Nuclear Receptor FXR/BAR Impairs Bile Acid and Lipid Homeostasis. Cell, 102, 731-744. [Google Scholar] [CrossRef]
|
|
[35]
|
Chu, H., Duan, Y., Yang, L. and Schnabl, B. (2019) Small Metabolites, Possible Big Changes: A Microbiota-Centered View of Non-Alcoholic Fatty Liver Disease. Gut, 68, 359-370. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Picca, A., Ponziani, F.R., Calvani, R., Marini, F., Biancolillo, A., Coelho-Junior, H.J., Gervasoni, J., Primiano, A., Putignani, L., Del Chierico, F., Reddel, S., Gasbarrini, A., Landi, F., Bernabei, R. and Marzetti, E. (2019) Gut Microbial, Inflammatory and Metabolic Signatures in Older People with Physical Frailty and Sarcopenia: Results from the BIOSPHERE Study. Nutrients, 12, Article No. 65. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Fielding, R.A., Reeves, A.R., Jasuja, R., Liu, C., Barrett, B.B. and Lustgarten, M.S. (2019) Muscle Strength Is Increased in Mice That Are Colonized with Microbiota from High-Functioning Older Adults. Experimental Gerontology, 127, Article ID: 110722. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Ni Lochlainn, M., Bowyer, R.C.E. and Steves, C.J. (2018) Dietary Protein and Muscle in Aging People: The Potential Role of the Gut Microbiome. Nutrients, 10, Article No. 929. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Ticinesi, A., Lauretani, F., Milani, C., Nouvenne, A., Tana, C., Del Rio, D., Maggio, M., Ventura, M. and Meschi, T. (2017) Aging Gut Microbiota at the Cross-Road between Nutrition, Physical Frailty, and Sarcopenia: Is There a Gut-Muscle Axis? Nutrients, 9, Article No. 1303. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Sligar, J., DeBruin, D.A., Saner, N.J., Philp, A.M. and Philp, A. (2022) The Importance of Mitochondrial Quality Control for Maintaining Skeletal Muscle Function across Health Span. American Journal of Physiology. Cell Physiology, 322, C461-C467. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Allen, A.M., Therneau, T.M., Larson, J.J., Coward, A., Somers, V.K. and Kamath, P.S. (2018) Nonalcoholic Fatty Liver Disease Incidence and Impact on Metabolic Burden and Death: A 20 Year-Community Study. Hepatology (Baltimore, Md.), 67, 1726-1736. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Su, D., Nie, Y., Zhu, A., Chen, Z., Wu, P., Zhang, L., Luo, M., Sun, Q., Cai, L., Lai, Y., Xiao, Z., Duan, Z., Zheng, S., Wu, G., Hu, R., Tsukamoto, H., Lugea, A., Liu, Z., Pandol, S.J. and Han, Y.P. (2016) Vitamin D Signaling through Induction of Paneth Cell Defensins Maintains Gut Microbiota and Improves Metabolic Disorders and Hepatic Steatosis in Animal Models. Frontiers in Physiology, 7, Article No. 498. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Holick, M.F. (2011) Vitamin D: A D-Lightful Solution for Health. Journal of Investigative Medicine: The Official Publication of the American Federation for Clinical Research, 59, 872-880. [Google Scholar] [CrossRef]
|
|
[44]
|
Barchetta, I., Del Ben, M., Angelico, F., Di Martino, M., Fraioli, A., La Torre, G., Saulle, R., Perri, L., Morini, S., Tiberti, C., Bertoccini, L., Cimini, F.A., Panimolle, F., Catalano, C., Baroni, M.G. and Cavallo, M.G. (2016) No Effects of Oral Vitamin D Supplementation on Non-Alcoholic Fatty Liver Disease in Patients with Type 2 Diabetes: A Randomized, Double-Blind, Placebo-Controlled Trial. BMC Medicine, 14, Article No. 92. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Berridge, M.J. (2017) Vitamin D Deficiency Accelerates Ageing and Age-Related Diseases: A Novel Hypothesis. The Journal of Physiology, 595, 6825-6836. [Google Scholar] [CrossRef]
|
|
[46]
|
Kamwa, V. and Hassan-Smith, Z.K. (2019) The Inter-Relationship between Marginal Vitamin D Deficiency and Muscle. Current Opinion in Endocrinology, Diabetes, and Obesity, 26, 322-328. [Google Scholar] [CrossRef]
|