|
[1]
|
Moch, H., Cubilla, A.L., et al. (2016) The 2016 WHO Classification of Tumours of the Urinary System and Male Genital Organs—Part A: Renal, Penile, and Testicular Tumours. European Urology, 70, 93-105. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Escudier, B., Porta, C., et al. (2019) Renal Cell Carcinoma: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Annals of Oncology, 30, 706-720. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Chen, W., Zheng, R., Zhang, S., et al. (2017) Cancer Incidence and Mortality in China in 2013: An Analysis Based on Urbanization Level. Chinese Journal of Cancer Research, 29, 1-10. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Zimpfer, A., Glass, Ä., Zettl, H., et al. (2019) [Renal Cell Carcinoma Diagnosis and Prognosis within the Context of the WHO Classification 2016]. Der Urologe, 58, 1057-1065. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Tsili, A.C., Argyropoulou, M.I., Radiology, D.O., et al. (2015) Advances of Multidetector Computed Tomography in the Characterization and Staging of Renal Cell Carcinoma. World Journal of Radiology, 7, 110-127. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Gillies, R.J., Kinahan, P.E. and Hricak, H. (2013) Radiomics: Images Are More Than Pictures, They Are Data. Radiology, 278, 563-577. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Erdim, C., Yardimci, A.H., Bektas, C.T., et al. (2020) Prediction of Benign and Malignant Solid Renal Masses: Machine Learning-Based CT Texture Analysis. Academic Radiology, 27, 1422-1429. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Leng, S., Takahashi, N., Cardona, D.G., et al. (2017) Subjective and Objective Heterogeneity Scores for Differentiating Small Renal Masses Using Contrast-Enhanced CT. Abdominal Radiology, 42, 1485-1492. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Mazurowski, M.A. (2015) Radiogenomics: What It Is and Why It Is Important. Journal of the American College of Radiology, 12, 862-866. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
何志嵩, 郭应禄. 肾癌的诊断及鉴别诊断[J]. 中华泌尿外科杂志, 2000, 21(7): 443.
|
|
[11]
|
He, H.J. and Wang, W.G. (2018) Preliminarily Study on Reproducibility of World Health Organization/International Society of Urological Pathology Grading System for Renal Cell Carcinoma. Chongqing Medicine, 47, 4214-4217, 4222.
|
|
[12]
|
Fuhrman, S., Lasky, L. and Limas, C. (1982) Prognostic Significance of Morphologic Parameters in Renal Cell Carcinoma. The American Journal of Surgical Pathology, 6, 655-664. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Baumann, M., Hölscher, T. and Begg, A.C. (2003) Towards Genetic Prediction of Radiation Responses: ESTRO’s GENEPI Project. Radiotherapy and Oncology, 69, 121-125. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Lambin, P., Rios-Velazquez, E., Leijenaar, R., et al. (2012) Radiomics: Extracting More Information from Medical Images Using Advanced Feature Analysis. European Journal of Cancer, 48, 441-446. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Shu, J., Wen, D., Xi, Y., et al. (2019) Clear Cell Renal Cell Carcinoma: Machine Learning-Based Computed Tomography Radiomics Analysis for the Prediction of WHO/ISUP Grade. European Journal of Radiology, 121, Article 108738. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
贺蓓, 陈敏. 肺癌影像组学研究进展[J]. 中国医学影像学杂志, 2020, 28(5): 397-400.
|
|
[17]
|
Suzuki, K. (2017) Overview of Deep Learning in Medical Imaging. Radiological Physics and Technology, 10, 257-273. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Sun, X.Y., Feng, Q.X., Xu, X., et al. (2020) Radiologic-Radiomic Machine Learning Models for Differentiation of Benign and Malignant Solid Renal Masses: Comparison with Expert-Level Radiologists. AJR: American Journal of Roentgenology, 214, W44-W54. [Google Scholar] [CrossRef]
|
|
[19]
|
申洋, 曹芳, 管政, 等. 基于CT影像组学鉴别乏脂肪型肾血管平滑肌脂肪瘤与肾透明细胞癌[J]. 医学影像学杂志, 2022, 32:(7): 1196-1199.
|
|
[20]
|
Fatemeh, D.F., Nikhil, G., Amir, H., et al. (2023) CT Radiomics for Differentiating Fat Poor Angiomyolipoma from Clear Cell Renal Cell Carcinoma: Systematic Review and Meta-Analysis. PLOS ONE, 18, e0287299. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Yang, S., Jian, Y., Yang, F., et al. (2023) Radiomics Analysis Based on Single Phase and Different Phase Combinations of Radiomics Features from Tri-Phasic CT to Distinguish Renal Oncocytoma from Chromophobe Renal Cell Carcinoma. Abdominal Radiology, 49, 182-191. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Bang, S., Wang, H.H., Kim, H., et al. (2023) Development and Validation of a Prediction Model for Differentiation of Benign and Malignant Fat-Poor Renal Tumors Using CT Radiomics. Applied Sciences, 13, Article 11345. [Google Scholar] [CrossRef]
|
|
[23]
|
Ming, L., Licong, D., Bing, O., et al. (2023) External Validation of Ultrasound Radiomics for Small (≤ 4 cm) Renal Mass Differentiation: A Comparison with Radiologists. Current Medical Imaging.
|
|
[24]
|
刘宁, 甘卫东, 郭宏骞. 2016年WHO肾肿瘤分类的认识[J]. 中华腔镜泌尿外科杂志(电子版), 2016, 10(5): 1-6.
|
|
[25]
|
Kocak, B., Durmaz, E.S., Ates, E., et al. (2019) Radiogenomics in Clear Cell Renal Cell Carcinoma: Machine Learning-Based High-Dimensional Quantitative CT Texture Analysis in Predicting PBRM1 Mutation Status. AJR: American Journal of Roentgenology, 212, W55-W63. [Google Scholar] [CrossRef]
|
|
[26]
|
Yu, Z.Y., Ding, J., Pang, H.Z., et al. (2022) A Triple-Classification for Differentiating Renal Oncocytoma from Renal Cell Carcinoma Subtypes and CK7 Expression Evaluation: A Radiomics Analysis. BMC Urology, 22, Article No. 147. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Ma, Y.Q., Guan, Z., Liang, H., et al. (2022) Predicting the WHO/ISUP Grade of Clear Cell Renal Cell Carcinoma through CT-Based Tumoral and Peritumoral Radiomics. Frontiers in Oncology, 12, Article 831112. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Xv, Y.J., Lv, F.J., Guo, H.M., et al. (2021) A CT-Based Radiomics Nomogram Integrated with Clinic-Radiological Features for Preoperatively Predicting WHO/ISUP Grade of Clear Cell Renal Cell Carcinoma. Frontiers in Oncology, 11, Article 712554. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Ma, Y., Cao, F., Xu, X., et al. (2020) Can Whole-Tumor Radiomics-Based CT Analysis Better Differentiate Fat-Poor Angiomyolipoma from Clear Cell Renal Cell Caricinoma: Compared with Conventional CT Analysis? Abdominal Radiology, 45, 2500-2507. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Nie, P., Yang, G.J., Wang, Y.M., et al. (2023) A CT-Based Deep Learning Radiomics Nomogram Outperforms the Existing Prognostic Models for Outcome Prediction in Clear Cell Renal Cell Carcinoma: A Multicenter Study. European Radiology, 33, 8858-8868. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
He, H.C., Jin, Z.J., Dai, J., et al. (2022) Computed Tomography-Based Radiomics Prediction of CTLA4 Expression and Prognosis in Clear Cell Renal Cell Carcinoma. Cancer Medicine, 12, 7627-7638. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Zhang, T., Ming, Y., Xu, J., et al. (2023) Radiomics and Ki-67 Index Predict Survival in Clear Cell Renal Cell Carcinoma. The British Journal of Radiology, 96, Article 20230187.
|
|
[33]
|
Smith, A.D., Zhang, X., et al. (2016) Vascular Tumor Burden as a New Quantitative CT Biomarker for Predicting Metastatic RC Response to Antiangiogenic Therapy. Radiology, 281, 484-498.
|
|
[34]
|
He, X., Wei, Y., Zhang, H., et al. (2020) Grading of Clear Cell Renal Cell Carcinomas by Using Machine Learning Based on Artificial Neural Networks and Radiomic Signatures Extracted from Multidetector Computed Tomography Images. Academic Radiology, 27, 157-168. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Ding, J., Xing, Z., Jiang, Z., et al. (2018) CT-Based Radiomic Model Predicts High Grade of Clear Cell Renal Cell Carcinoma. European Journal of Radiology, 103, 51-56. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
李小虎, 裴子璐, 等. 肾脏CT容积纹理分析及机器学习相结合的影像组学评价肾透明细胞癌病理分级的价值初探[J]. 中华放射学杂志, 2018, 52(5): 344-348.
|