|
[1]
|
Correll, D.J., Vlassakov, K.V. and Kissin, I. (2014) No Evidence of Real Progress in Treatment of Acute Pain, 1993-2012: Scientometric Analysis. Journal of Pain Research, 7, 199-210. [Google Scholar] [CrossRef]
|
|
[2]
|
Vadivelu, N., Mitra, S. and Narayan, D. (2010) Recent Advances in Postoperative Pain Management. Yale Journal of Biology and Medicine, 83, 11-25.
|
|
[3]
|
Liu, Y., Xiao, S., Yang, H., Lv, X., Hou, A., Ma, Y., Jiang, Y., Duan, C., Mi, W. and CAPOPS Group (2023) Postoperative Pain-Related Outcomes and Perioperative Pain Management in China: A Population-Based Study. The Lancet Regional Health-Western Pacific, 39, Article 100822. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Turk, D. and Melzack, R. (2001) The Measurement of Pain and the Assessment of People Experiencing Pain. In: Turk, D.C. and Melzack, R., Eds., Handbook of Pain Assessment, The Guilford Press, New York, 3-16.
|
|
[5]
|
Melzack, R. and Katz, J. (2006) Pain Assessment in Adult Patients. In: Wall, P.D., McMahon, S.B., Koltzenburg, M., Eds., Wall and Melzack’s Textbook of Pain, Elsevier, Amsterdam, 291-304. [Google Scholar] [CrossRef]
|
|
[6]
|
Hjermstad, M.J., Fayers, P.M., Haugen, D.F., et al. (2011) Studies Comparing Numerical Rating Scales, Verbal Rating Scales, and Visual Analogue Scales for Assessment of Pain Intensity in Adults: A Systematic Literature Review. Journal of Pain and Symptom Management, 41, 1073-1093. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
McGrath, P. and Unruh, A. (2013) Measurement and Assessment of Paediatric Pain. In: McMahon, S.B. and Koltzenburg, M., Eds., Wall and Melzack Textbook of Pain, Elsevier, Saunders, 320-327.
|
|
[8]
|
Khatibi, A. and Mazidi, M. (2019) Observers’ Impression of the Person in Pain Influences Their Pain Estimation and Tendency to Help. European Journal of Pain, 23, 936-944. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Zamzmi, G., Kasturi, R., Goldgof, D., Zhi, R., Ashmeade, T. and Sun, Y. (2018) A Review of Automated Pain Assessment in Infants: Features, Classification Tasks, and Databases. IEEE Reviews in Biomedical Engineering, 11, 77-96. [Google Scholar] [CrossRef]
|
|
[10]
|
Davenport, T. and Kalakota, R. (2019) The Potential for Artificial Intelligence in Healthcare. Future Healthcare Journal, 6, 94-98. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Bajwa, J., Munir, U., Nori, A. and Williams, B. (2021) Artificial Intelligence in Healthcare: Transforming the Practice of Medicine. Future Healthcare Journal, 8, e188-e194. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Ekman, P. and Friesen, W.V. (1978) Facial Action Coding System (FACS). APA PsycTests. https://psycnet.apa.org/home [Google Scholar] [CrossRef]
|
|
[13]
|
Coan, J.A. and Allen, J.J. (2007) Handbook of Emotion Elicitation and Assessment. Oxford University Press, Oxford. [Google Scholar] [CrossRef]
|
|
[14]
|
Semwal, A. and Londhe, N.D. (2020) Automated Facial Expression Based Pain Assessment Using Deep Convolutional Neural Network. 2020 3rd International Conference on Intelligent Sustainable Systems (ICISS), Thoothukudi, 3-5 December 2020, 366-370. [Google Scholar] [CrossRef]
|
|
[15]
|
Bellantonio, M., Haque, M.A., Rodriguez, P., et al. (2016) Spatio-Temporal Pain Recognition in CNN-Based Super-Resolved Facial Images. Video Analytics, Face and Facial Expression Recognition and Audience Measurement, Cancun, 4 December 2016, 151-162. [Google Scholar] [CrossRef]
|
|
[16]
|
Cruz, M.D., Fernandes, A.M. and Oliveira, C.R. (2016) Epidemiology of Painful Procedures Performed in Neonates: A Systematic Review of Observational Studies. European Journal of Pain, 20, 489-498. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
McPherson, C., Miller, S.P., El-Dib, M., et al. (2020) The Influence of Pain, Agitation, and Their Management on the Immature Brain. Pediatric Research, 88, 168-175. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Walker, S.M. (2019) Long-Term Effects of Neonatal Pain. Seminars in Fetal and Neonatal Medicine, 24, Article 101005. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Salekin, M.S., Zamzmi, G., Hausmann, J., Goldgof, D., Kasturi, R., Kneusel, M., Ashmeade, T., Ho, T. and Sun, Y. (2021) Multimodal Neonatal Procedural and Postoperative Pain Assessment Dataset. Data in Brief, 35, Article 106796. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Salekin, M.S., Zamzmi, G., Goldgof, D., Kasturi, R., Ho, T. and Sun, Y. (2019) Multi-Channel Neural Network for Assessing Neonatal Pain from Videos. 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, 6-9 October 2019, 1551-1556. [Google Scholar] [CrossRef]
|
|
[21]
|
Salekin, M.S., Zamzmi, G., Goldgof, D., Kasturi, R., Ho, T. and Sun, Y. (2020) First Investigation into the Use of Deep Learning for Continuous Assessment of Neonatal Postoperative Pain. 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020), Buenos Aires, 16-20 November 2020, 415-419. [Google Scholar] [CrossRef]
|
|
[22]
|
Smeland, A.H., Twycross, A., Lundeberg, S. and Rustøen, T. (2018) Nurses’ Knowledge, Attitudes and Clinical Practice in Pediatric Postoperative Pain Management. Pain Management Nursing, 19, 585-598. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Brand, K. and Al-Rais, A. (2019) Pain Assessment in Children. Anaesthesia and Intensive Care Medicine, 20, 314-317. [Google Scholar] [CrossRef]
|
|
[24]
|
Aydın, A.İ. and Özyazıcıoğlu, N. (2023) Assessment of Postoperative Pain in Children with Computer Assisted Facial Expression Analysis. Journal of Pediatric Nursing, 71, 60-65. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Wu, W., et al. (2022) Detecting Temporal Pain Status of Postoperative Children from Facial Expression. Intelligent Robotics and Applications 15th International Conference, ICIRA 2022, Harbin, 1-3 August 2022, 700-711. [Google Scholar] [CrossRef]
|
|
[26]
|
Sikka, K., Ahmed, A.A., Diaz, D., Goodwin, M.S., Craig, K.D., Bartlett, M.S. and Huang, J.S. (2015) Automated Assessment of Children’s Postoperative Pain Using Computer Vision. American Academy of Pediatrics, 136, e124-e131. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Birnie, K.A., Hundert, A.S., Lalloo, C., Nguyen, C. and Stinson, J.N. (2019) Recommendations for Selection of Self-Report Pain Intensity Measures in Children and Adolescents: A Systematic Review and Quality Assessment of Measurement Properties. PAIN, 160, 5-18. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Fang, J., Wu, W., Liu, J. and Zhang, S. (2023) Deep Learning-Guided Postoperative Pain Assessment in Children. PAIN, 164, 2029-2035. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Susam, B., Riek, N., Akcakaya, M., Xu, X., de Sa, V., Nezamfar, H., Diaz, D., Craig, K., Goodwin, M. and Huang, J. (2022) Automated Pain Assessment in Children Using Electrodermal Activity and Video Data Fusion via Machine Learning. IEEE Transactions on Biomedical Engineering, 69, 422-431. [Google Scholar] [CrossRef]
|
|
[30]
|
Fontaine, D., Vielzeuf, V., Genestier, P., Limeux, P., Santucci-Sivilotto, S., Mory, E., Darmon, N., Lanteri-Minet, M., Mokhtar, M., Laine, M., Vistoli, D. for the DEFI Study Group (2022) Artificial Intelligence to Evaluate Postoperative Pain Based on Facial Expression Recognition. European Journal of Pain, 26, 1282-1291. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Wu, C.-L., Liu, S.-F., Yu, T.-L., Shih, S.-J., Chang, C.-H., Yang Mao, S.-F., Li, Y.-S., Chen, H.-J., Chen, C.-C. and Chao, W.-C. (2022) Deep Learning-Based Pain Classifier Based on the Facial Expression in Critically Ill Patients. Frontiers in Medicine, 9, Article 851690. [Google Scholar] [CrossRef] [PubMed]
|