|
[1]
|
Mahmoudian, A., Lohmander, L.S., Mobasheri, A., et al. (2021) Early-Stage Symptomatic Osteoarthritis of the Knee—Time for Action. Nature Reviews Rheumatology, 17, 621-632. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Yao, Q., Wu, X., Tao, C., et al. (2023) Osteoarthritis: Pathogenic Signaling Pathways and Therapeutic Targets. Signal Transduction and Targeted Therapy, 8, Article No. 56. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Katz, J.N., Arant, K.R. and Loeser, R.F. (2021) Diagnosis and Treatment of Hip and Knee Osteoarthritis: A Review. JAMA, 325, 568-578. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Saeedi, T., Alotaibi, H.F. and Prokopovich, P. (2020) Polymer Colloids as Drug Delivery Systems for the Treatment of Arthritis. Advances in Colloid and Interface Science, 285, Article ID: 102273. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Than, A., Liu, C., Chang, H., et al. (2018) Self-Implantable Double-Layered Micro-Drug-Reservoirs for Efficient and Controlled Ocular Drug Delivery. Nature Communications, 9, Article No. 4433. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Rosser, J., Bachmann, B., Jordan, C., et al. (2019) Microfluidic Nutrient Gradient-Based Three-Dimensional Chondrocyte Culture-on-a-Chip as an in Vitro Equine Arthritis Model. Materials Today Bio, 4, Article ID: 100023. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Bruno, M.C., Cristiano, M.C., Celia, C., et al. (2022) Injectable Drug Delivery Systems for Osteoarthritis and Rheumatoid Arthritis. ACS Nano, 16, 19665-19690. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Song, P., Cui, Z. and Hu, L. (2022) Applications and Prospects of Intra-Articular Drug Delivery System in Arthritis Therapeutics. Journal of Controlled Release, 352, 946-960. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Rahimi, M., Charmi, G., Matyjaszewski, K., et al. (2021) Recent Developments in Natural and Synthetic Polymeric Drug Delivery Systems Used for the Treatment of Osteoarthritis. Acta Biomaterialia, 123, 31-50. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Wang, S., Qiu, Y., Qu, L., et al. (2022) Hydrogels for Treatment of Different Degrees of Osteoarthritis. Frontiers in Bioengineering and Biotechnology, 10, Article 858656. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Shang, F., Yu, Y., Liu, S., et al. (2021) Advancing Application of Mesenchymal Stem Cell-Based Bone Tissue Regeneration. Bioactive materials, 6, 666-683. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Chiang, C.W., Hsiao, Y.C., Jheng, P.R., et al. (2021) Strontium Ranelate-Laden near-Infrared Photothermal-Inspired Methylcellulose Hydrogel for Arthritis Treatment. Materials Science and Engineering: C, 123, Article ID: 111980. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Cui, Z.K., Kim, S., Baljon, J.J., et al. (2019) Microporous Methacrylated Glycol Chitosan-Montmorillonite Nanocomposite Hydrogel for Bone Tissue Engineering. Nature Communications, 10, 3523. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Duan, W.L., Zhang, L.N., Bohara, R., et al. (2023) Adhesive Hydrogels in Osteoarthritis: From Design to Application. Military Medical Research, 10, Article No. 4. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Kawanishi, Y., Nakasa, T., Shoji, T., et al. (2014) Intra-Articular Injection of Synthetic Microrna-210 Accelerates Avascular Meniscal Healing in Rat Medial Meniscal Injured Model. Arthritis Research & Therapy, 16, Article No. 488. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Teichtahl, A.J., Wulidasari, E., Brady, S.R., et al. (2015) A Large Infrapatellar Fat Pad Protects against Knee Pain and Lateral Tibial Cartilage Volume Loss. Arthritis Research & Therapy, 17, Article No. 318. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Li, H., Wu, C., Yu, X., et al. (2023) Recent Advances of Pva-Based Hydrogels in Cartilage Repair Application. Journal of Materials Research and Technology, 24, 2279-2298. [Google Scholar] [CrossRef]
|
|
[18]
|
侯钰熙, 张然, 武秀萍, 等. 仿生水凝胶在软骨组织工程应用中的优势与潜力[J]. 中国组织工程研究, 2022, 26(34): 5569-5576.
|
|
[19]
|
Fan, H. and Gong, J.P. (2020) Fabrication of Bioinspired Hydrogels: Challenges and Opportunities. Macromolecules, 53, 2769-2782. [Google Scholar] [CrossRef]
|
|
[20]
|
Sun, T.L., Kurokawa, T., Kuroda, S., et al. (2013) Physical Hydrogels Composed of Polyampholytes Demonstrate High Toughness and Viscoelasticity. Nature Materials, 12, 932-937. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Chen, Q., Zhang, X., Chen, K., et al. (2022) Bilayer Hydrogels with Low Friction and High Load-Bearing Capacity by Mimicking the Oriented Hierarchical Structure of Cartilage. ACS Applied Materials & Interfaces, 14, 52347-52358. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Sun, J.Y., Zhao, X., Illeperuma, W.R., et al. (2012) Highly Stretchable and Tough Hydrogels. Nature, 489, 133-136. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Gong, J.P., Katsuyama, Y., Kurokawa, T., et al. (2003) Double-Network Hydrogels with Extremely High Mechanical Strength. Advanced materials, 15, 1155-1158. [Google Scholar] [CrossRef]
|
|
[24]
|
Rosales, A.M. and Anseth, K.S. (2016) The Design of Reversible Hydrogels to Capture Extracellular Matrix Dynamics. Nature Reviews Materials, 1, Article No. 15012. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Szustakiewicz, K., Włodarczyk, M., Gazińska, M., et al. (2021) The Effect of Pore Size Distribution and L-Lysine Modified Apatite Whiskers (Hap) on Osteoblasts Response in Plla/Hap Foam Scaffolds Obtained in the Thermally Induced Phase Separation Process. International Journal of Molecular Sciences, 22, Article 3607. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Zhou, L., Fan, L., Zhang, F.M., et al. (2021) Hybrid Gelatin/Oxidized Chondroitin Sulfate Hydrogels Incorporating Bioactive Glass Nanoparticles with Enhanced Mechanical Properties, Mineralization, and Osteogenic Differentiation. Bioactive Materials, 6, 890-904. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Zhou, T., Chen, S., Ding, X., et al. (2021) Fabrication and Characterization of Collagen/PVA Dual-Layer Membranes for Periodontal Bone Regeneration. Frontiers in Bioengineering and Biotechnology, 9, Article 630977. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Daraeinejad, Z. and Shabani, I. (2021) Enhancing Cellular Infiltration on Fluffy Polyaniline-Based Electrospun Nanofibers. Frontiers in Bioengineering and Biotechnology, 9, Article 641371. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Lu, Q., Diao, J., Wang, Y., et al. (2023) 3d Printed Pore Morphology Mediates Bone Marrow Stem Cell Behaviors via Rhoa/Rock2 Signaling Pathway for Accelerating Bone Regeneration. Bioactive Materials, 26, 413-424. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Zhang, L., Wei, Y., Chi, Y., et al. (2021) Two-Step Generation of Mesenchymal Stem/Stromal Cells from Human Pluripotent Stem Cells with Reinforced Efficacy Upon Osteoarthritis Rabbits by Ha Hydrogel. Cell & Bioscience, 11, Article No. 6. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Uzieliene, I., Bironaite, D., Bernotas, P., et al. (2021) Mechanotransducive Biomimetic Systems for Chondrogenic Differentiation in Vitro. International Journal of Molecular Sciences, 22, Article 9690. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Lei, Y., Wang, X., Liao, J., et al. (2022) Shear-Responsive Boundary-Lubricated Hydrogels Attenuate Osteoarthritis. Bioactive Materials, 16, 472-484. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Yuan, H., Mears, L.L., Wang, Y., et al. (2023) Lubricants for Osteoarthritis Treatment: From Natural to Bioinspired and Alternative Strategies. Advances in Colloid and Interface Science, 311, Article ID: 102814. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Lin, W. AND Klein, J. (2022) Hydration Lubrication in Biomedical Applications: From Cartilage to Hydrogels. Accounts of Materials Research, 3, 213-223. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Zhao, W., Zhang, Y., Zhao, X., et al. (2022) Bioinspired Design of a Cartilage-Like Lubricated Composite with Mechanical Robustness. ACS Applied Materials & Interfaces, 14, 9899-9908. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
新型. 兰州化物所仿生润滑研究取得进展[J]. 化工新型材料, 2022, 50(8): 95.
|
|
[37]
|
Lin, W., Kluzek, M., Iuster, N., et al. (2020) Cartilage-Inspired, Lipid-Based Boundary-Lubricated Hydrogels. Science, 370, 335-338. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Han, Y., Yang, J., Zhao, W., et al. (2021) Biomimetic Injectable Hydrogel Microspheres with Enhanced Lubrication and Controllable Drug Release for the Treatment of Osteoarthritis. Bioactive Materials, 6, 3596-3607. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
易佳锋, 刘宇博, 李超, 等. 关节软骨润滑机制理论及仿生软骨材料的摩擦学应用[J]. 中国组织工程研究, 2023, 27(25): 4075-4084.
|
|
[40]
|
Chow, Y.Y. and Chin, K.Y. (2020) The Role of Inflammation in the Pathogenesis of Osteoarthritis. Mediators of Inflammation, 2020, Article ID: 8293921. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Sanchez-Lopez, E., Coras, R., Torres, A., et al. (2022) Synovial Inflammation in Osteoarthritis Progression. Nature Reviews Rheumatology, 18, 258-275. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Ansari, M.Y., Ahmad, N. and Haqqi, T.M. (2020) Oxidative Stress and Inflammation in Osteoarthritis Pathogenesis: Role of Polyphenols. Biomedicine & Pharmacotherapy, 129, Article ID: 110452. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Comblain, F., Rocasalbas, G., Gauthier, S., et al. (2017) Chitosan: A Promising Polymer for Cartilage Repair and Viscosupplementation. Bio-Medical Materials and Engineering, 28, S209-S215. [Google Scholar] [CrossRef]
|
|
[44]
|
Mou, D., Yu, Q., Zhang, J., et al. (2021) Intra-Articular Injection of Chitosan-Based Supramolecular Hydrogel for Osteoarthritis Treatment. Tissue Engineering and Regenerative Medicine, 18, 113-125. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Ma, J.C., Luo, T., Feng, B., et al. (2023) Exploring the Translational Potential of Plga Nanoparticles for Intra-Articular Rapamycin Delivery in Osteoarthritis Therapy. Journal of Nanobiotechnology, 21, Article No. 361. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
He, Z., Wang, B., Hu, C., et al. (2017) An Overview of Hydrogel-Based Intra-Articular Drug Delivery for the Treatment of Osteoarthritis. Colloids and Surfaces B: Biointerfaces, 154, 33-39. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Wang, Q.S., Xu, B.X., Fan, K.J., et al. (2021) Dexamethasone-Loaded Thermo-Sensitive Hydrogel Attenuates Osteoarthritis by Protecting Cartilage and Providing Effective Pain Relief. Annals of Translational Medicine, 9, Article 1120. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Zhu, J., Yang, S., Qi, Y., et al. (2022) Stem Cell-Homing Hydrogel-Based Mir-29b-5p Delivery Promotes Cartilage Regeneration by Suppressing Senescence in an Osteoarthritis Rat Model. Science Advances, 8, eabk0011. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Sun, Y., Zhao, J., Wu, Q., et al. (2022) Chondrogenic Primed Extracellular Vesicles Activate Mir-455/Sox11/Foxo Axis for Cartilage Regeneration and Osteoarthritis Treatment. NPJ Regenerative Medicine, 7, Article No. 53. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Ding, Z., Yan, Z., Yuan, X., et al. (2024) Apoptotic Extracellular Vesicles Derived from Hypoxia-Preconditioned Mesenchymal Stem Cells within a Modified Gelatine Hydrogel Promote Osteochondral Regeneration by Enhancing Stem Cell Activity and Regulating Immunity. Journal of Nanobiotechnology, 22, Article No. 74. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Lei, L., Cong, R., Ni, Y., et al. (2023) Dual-Functional Injectable Hydrogel for Osteoarthritis Treatments. Advanced Healthcare Materials, 13, Article ID: 2302551. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Lin, F., Wang, Z., Xiang, L., et al. (2021) Charge-Guided Micro/Nano-Hydrogel Microsphere for Penetrating Cartilage Matrix. Advanced Functional Materials, 31, Article ID: 2107678. [Google Scholar] [CrossRef]
|
|
[53]
|
De Moor, C.P., Doh, L. and Siegel, R.A. (1991) Long-Term Structural Changes in Ph-Sensitive Hydrogels. Biomaterials, 12, 836-840. [Google Scholar] [CrossRef]
|
|
[54]
|
Chen, P., Xia, C., Mei, S., et al. (2016) Intra-Articular Delivery of Sinomenium Encapsulated by Chitosan Microspheres and Photo-Crosslinked Gelma Hydrogel Ameliorates Osteoarthritis by Effectively Regulating Autophagy. Biomaterials, 81, 1-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Manferdini, C., Gabusi, E., Saleh, Y., et al. (2022) Mesenchymal Stromal Cells Laden in Hydrogels for Osteoarthritis Cartilage Regeneration: A Systematic Review from in Vitro Studies to Clinical Applications. Cells, 11, Article 3969. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Li, P., Fu, L., Liao, Z., et al. (2021) Chitosan Hydrogel/3d-Printed Poly (Ε-Caprolactone) Hybrid Scaffold Containing Synovial Mesenchymal Stem Cells for Cartilage Regeneration Based on Tetrahedral Framework Nucleic Acid Recruitment. Biomaterials, 278, Article ID: 121131. [Google Scholar] [CrossRef] [PubMed]
|