|
[1]
|
Boström, P., Wu, J., Jedrychowski, M.P., Korde, A., Ye, L., Lo, J.C., Rasbach, K.A., Boström, E.A., Choi, J.H., Long, J.Z., Kajimura, S., Zingaretti, M.C., Vind, B.F., Tu, H., Cinti, S., Højlund, K., Gygi, S.P. and Spiegelman, B.M. (2012) A PGC1-α-Dependent Myokine That Drives Brown-Fat-Like Development of White Fat and Thermogenesis. Nature, 481, 463-468. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Aydin, S. (2014) Three New Players in Energy Regulation: Preptin, Adropin and Irisin. Peptides, 56, 94-110. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Li, X., Duan, H., Liu, Q., Umar, M., Luo, W., Yang, X., Zhu, J. and Li, M., (2019) Construction of a Pichia Pastoris Strain Efficiently Secreting Irisin and Assessment of Its Bioactivity in HepG2 Cells. International Journal of Biological Macromolecules, 124, 60-70. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Huh, J.Y., Mougios, V., Kabasakalis, A., Fatouros, I., Siopi, A., Douroudos, I.I., Filippaios, A., Panagiotou, G., Park, K.H. and Mantzoros, C.S. (2014) Exercise-Induced Irisin Secretion Is Independent of Age or Fitness Level and Increased Irisin May Directly Modulate Muscle Metabolism through AMPK Activation. The Journal of Clinical Endocrinology and Metabolism, 99, E2154-E2161. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Jodeiri Farshbaf, M. and Alviña, K. (2021) Multiple Roles in Neuroprotection for the Exercise Derived Myokine Irisin. Frontiers in Aging Neuroscience, 13, Article 649929. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Piya, M.K., Harte, A.L., Sivakumar, K., Tripathi, G., Voyias, P.D., James, S., Sabico, S., Al-Daghri, N.M., Saravanan, P., Barber, T.M., Kumar, S., Vatish, M. and McTernan, P.G. (2014) The Identification of Irisin in Human Cerebrospinal Fluid: Influence of Adiposity, Metabolic Markers, and Gestational Diabetes. American Journal of Physiology: Endocrinology and Metabolism, 306, E512-E518. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Erickson, K.I., Weinstein, A.M. and Lopez, O.L. (2012) Physical Activity, Brain Plasticity, and Alzheimer’s Disease. Archives of Medical Research, 43, 615-621. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Panati, K., Suneetha, Y. and Narala, V.R. (2016) Irisin/FNDC5—An Updated Review. European Review for Medical and Pharmacological Sciences, 20, 689-697.
|
|
[9]
|
Waseem, R., Shamsi, A., Mohammad, T., Alhumaydhi, F.A., Kazim, S.N., Hassan, M.I., Ahmad, F. and Islam, A. (2021) Multispectroscopic and Molecular Docking Insight into Elucidating the Interaction of Irisin with Rivastigmine Tartrate: A Combinational Therapy Approach to Fight Alzheimer’s Disease. ACS Omega, 6, 7910-7921. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Wang, S. and Pan, J. (2016) Irisin Ameliorates Depressive-Like Behaviors in Rats by Regulating Energy Metabolism. Biochemical and Biophysical Research Communications, 474, 22-28. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Chen, Z., Zhang, Y., Zhao, F., Yin, C., Yang, C., Wang, X., Wu, Z., Liang, S., Li, D., Lin, X., Tian, Y., Hu, L., Li, Y. and Qian, A. (2020) Recombinant Irisin Prevents the Reduction of Osteoblast Differentiation Induced by Stimulated Microgravity through Increasing β-Catenin Expression. International Journal of Molecular Sciences, 21, Article 1259. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Colaianni, G., Cuscito, C., Mongelli, T., Pignataro, P., Buccoliero, C., Liu, P., Lu, P., Sartini, L., Di Comite, M., Mori, G., Di Benedetto, A., Brunetti, G., Yuen, T., Sun, L., Reseland, J. E., Colucci, S., New, M.I., Zaidi, M., Cinti, S. and Grano, M., (2015) The Myokine Irisin Increases Cortical Bone Mass. Proceedings of the National Academy of Sciences of the United States of America, 112, 12157-12162. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Clarke, B. (2008) Normal Bone Anatomy and Physiology. Clinical Journal of the American Society of Nephrology, 3, S131-S139. [Google Scholar] [CrossRef]
|
|
[14]
|
Alford, A.I., Kozloff, K.M. and Hankenson, K.D. (2015) Extracellular Matrix Networks in Bone Remodeling. The International Journal of Biochemistry & Cell Biology, 65, 20-31. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Morgan, E.F., Mason, Z.D., Chien, K.B., Pfeiffer, A.J., Barnes, G.L., Einhorn, T.A. and Gerstenfeld, L.C. (2009) Micro-Computed Tomography Assessment of Fracture Healing: Relationships among Callus Structure, Composition, and Mechanical Function. Bone, 44, 335-344. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Feng, X. (2009) Chemical and Biochemical Basis of Cell-Bone Matrix Interaction in Health and Disease. Current Chemical Biology, 3, 189-196. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Zhou, R., Guo, Q., Xiao, Y., Guo, Q., Huang, Y., Li, C. and Luo, X. (2021) Endocrine Role of Bone in the Regulation of Energy Metabolism. Bone Research, 9, Article No. 25. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Shao, J., Wang, Z., Yang, T., Ying, H., Zhang, Y. and Liu, S. (2015) Bone Regulates Glucose Metabolism as an Endocrine Organ through Osteocalcin. International Journal of Endocrinology, 2015, Article ID: 967673. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Hadjidakis, D.J. and Androulakis, I.I. (2006) Bone Remodeling. Annals of the New York Academy of Sciences, 1092, 385-396. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Weaver, C.M., Gordon, C.M., Janz, K.F., Kalkwarf, H.J., Lappe, J.M., Lewis, R., O’Karma, M., Wallace, T.C. and Zemel, B.S. (2016) The National Osteoporosis Foundation’s Position Statement on Peak Bone Mass Development and Lifestyle Factors: A Systematic Review and Implementation Recommendations. Osteoporosis International, 27, 1281-1386. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Bonjour, J.P., Chevalley, T., Ferrari, S. and Rizzoli, R. (2009) The Importance and Relevance of Peak Bone Mass in the Prevalence of Osteoporosis. Salud Publica De Mexico, 51, S5-S17. [Google Scholar] [CrossRef]
|
|
[22]
|
Khajuria, D.K., Razdan, R. and Mahapatra, D.R. (2011) Drugs for the Management of Osteoporosis: A Review. Revista Brasileira De Reumatologia, 51, 365-371. [Google Scholar] [CrossRef]
|
|
[23]
|
Curtis, E., Litwic, A., Cooper, C. and Dennison, E. (2015) Determinants of Muscle and Bone Aging. Journal of Cellular Physiology, 230, 2618-2625. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Genant, H.K., Cooper, C., Poor, G., Reid, I., Ehrlich, G., Kanis, J., Nordin, B.E., Barrett-Connor, E., Black, D., Bonjour, J.P., Dawson-Hughes, B., Delmas, P.D., Dequeker, J., Ragi Eis, S., Gennari, C., Johnell, O., Johnston Jr., C.C., Lau, E.M., Liberman, U.A., Lindsay, R., Martin, T.J., Masri, B., Mautalen, C.A., Meunier, P.J., Khaltaev, N., et al. (1999) Interim Report and Recommendations of the World Health Organization Task-Force for Osteoporosis. Osteoporosis International, 10, 259-264. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Lewiecki, E.M. and Watts, N.B. (2009) New Guidelines for the Prevention and Treatment of Osteoporosis. Southern Medical Journal, 102, 175-179. [Google Scholar] [CrossRef]
|
|
[26]
|
Pisani, P., Renna, M.D., Conversano, F., Casciaro, E., Di Paola, M., Quarta, E., Muratore, M. and Casciaro, S. (2016) Major Osteoporotic Fragility Fractures: Risk Factor Updates and Societal Impact. World Journal of Orthopedics, 7, 171-181. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Kuo, T.R. and Chen, C.H. (2017) Bone Biomarker for the Clinical Assessment of Osteoporosis: Recent Developments and Future Perspectives. Biomarker Research, 5, Article No. 18. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Lo Cascio, V., Bertoldo, F., Gambaro, G., Gasperi, E., Furlan, F., Colapietro, F., Lo Cascio, C. and Campagnola, M. (1999) Urinary Galactosyl-Hydroxylysine in Postmenopausal Osteoporotic Women: A Potential Marker of Bone Fragility. Journal of Bone and Mineral Research, 14, 1420-1424. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Forsprecher, J., Wang, Z., Goldberg, H.A. and Kaartinen, M.T. (2011) Transglutaminase-Mediated Oligomerization Promotes Osteoblast Adhesive Properties of Osteopontin and Bone Sialoprotein. Cell Adhesion & Migration, 5, 65-72. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Holm, E., Gleberzon, J.S., Liao, Y., Sørensen, E.S., Beier, F., Hunter, G.K. and Goldberg, H.A. (2014) Osteopontin Mediates Mineralization and Not Osteogenic Cell Development in Vitro. The Biochemical Journal, 464, 355-364. [Google Scholar] [CrossRef]
|
|
[31]
|
Si, J., Wang, C., Zhang, D., Wang, B. and Zhou, Y. (2020) Osteopontin in Bone Metabolism and Bone Diseases. Medical Science Monitor, 26, e919159. [Google Scholar] [CrossRef]
|
|
[32]
|
Palermo, A., Strollo, R., Maddaloni, E., Tuccinardi, D., D’Onofrio, L., Briganti, S.I., Defeudis, G., De Pascalis, M., Lazzaro, M.C., Colleluori, G., Manfrini, S., Pozzilli, P. and Napoli, N. (2015) Irisin Is Associated with Osteoporotic Fractures Independently of Bone Mineral Density, Body Composition or Daily Physical Activity. Clinical Endocrinology, 82, 615-619. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Qiao, X., Nie, Y., Ma, Y., Chen, Y., Cheng, R., Yin, W., Hu, Y., Xu, W. and Xu, L. (2016) Irisin Promotes Osteoblast Proliferation and Differentiation via Activating the MAP Kinase Signaling Pathways. Scientific Reports, 6, Article No. 18732. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Colaianni, G., Cuscito, C., Mongelli, T., Oranger, A., Mori, G., Brunetti, G., Colucci, S., Cinti, S. and Grano, M. (2014) Irisin Enhances Osteoblast Differentiation in Vitro. International Journal of Endocrinology, 2014, Article ID: 902186. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Kim, H., Wrann, C.D., Jedrychowski, M., Vidoni, S., Kitase, Y., Nagano, K., Zhou, C., Chou, J., Parkman, V.A., Novick, S.J., Strutzenberg, T.S., Pascal, B.D., Le, P.T., Brooks, D.J., Roche, A.M., Gerber, K.K., Mattheis, L., Chen, W., Tu, H., Bouxsein, M.L., Griffin, P.R., Baron, R., Rosen, C.J., Bonewald, L.F. and Spiegelman, B.M. (2018) Irisin Mediates Effects on Bone and Fat via αV Integrin Receptors. Cell, 175, 1756-1768.E17. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Estell, E.G., Le, P.T., Vegting, Y., Kim, H., Wrann, C., Bouxsein, M.L., Nagano, K., Baron, R., Spiegelman, B.M. and Rosen, C.J. (2020) Irisin Directly Stimulates Osteoclastogenesis and Bone Resorption in Vitro and in Vivo. eLife, 9, e58172. [Google Scholar] [CrossRef]
|
|
[37]
|
Serbest, S., Tiftikçi, U., Tosun, H.B. and Kısa, Ü. (2017) The Irisin Hormone Profile and Expression in Human Bone Tissue in the Bone Healing Process in Patients. Medical Science Monitor, 23, 4278-4283. [Google Scholar] [CrossRef]
|
|
[38]
|
Singhal, V., Lawson, E.A., Ackerman, K.E., Fazeli, P.K., Clarke, H., Lee, H., Eddy, K., Marengi, D.A., Derrico, N.P., Bouxsein, M.L. and Misra, M. (2014) Irisin Levels Are Lower in Young Amenorrheic Athletes Compared with Eumenorrheic Athletes and Non-Athletes and Are Associated with Bone Density and Strength Estimates. PLOS ONE, 9, e100218. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Zhu, X., Li, X., Wang, X., Chen, T., Tao, F., Liu, C., Tu, Q., Shen, G. and Chen, J.J. (2021) Irisin Deficiency Disturbs Bone Metabolism. Journal of Cellular Physiology, 236, 664-676. [Google Scholar] [CrossRef] [PubMed]
|