|
[1]
|
Alaggio, R., Amador, C., Anagnostopoulos, I., et al. (2022) The 5th Edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia, 36, 1720-1748. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
闫淑芳, 李思静, 刘波, 等. 头颈部结外弥漫大B细胞淋巴瘤的临床病理特征及预后分析[J]. 新疆医学, 2021, 51(7): 743-748.
|
|
[3]
|
Zhang, T., Liu, H., Jiao, L., et al. (2022) Genetic Characteristics Involving the PD-1/PD-L1/L2 and CD73/A2aR Axes and the Immunosuppressive Microenvironment in DLBCL. The Journal for ImmunoTherapy of Cancer, 10, e004114. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Algarra, I., Garrido, F. and Garcia-Lora, A.M. (2021) MHC Heterogeneity and Response of Metastases to Immunotherapy. Cancer and Metastasis Reviews, 40, 501-517. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Bourne, C.M., Mun, S.S., Dao, T., et al. (2022) Unmasking the Suppressed Immunopeptidome of EZH2-Mutated Diffuse Large B-Cell Lymphomas through Combination Drug Treatment. Blood Advances, 6, 4107-4121. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Sabbatino, F., Villani, V., Yearley, J.H., et al. (2016) PD-L1 and HLA Class I Antigen Expression and Clinical Course of the Disease in Intrahepatic Cholangiocarcinoma. Clinical Cancer Research, 22, 470-478. [Google Scholar] [CrossRef]
|
|
[7]
|
Imai, D., Yoshizumi, T., Okano, S., et al. (2017) The Prognostic Impact of Programmed Cell Death Ligand 1 and Human Leukocyte Antigen Class I in Pancreatic Cancer. Cancer Medicine, 6, 1614-1626. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Raskov, H., Orhan, A., Christensen, J.P., et al. (2021) Cytotoxic CD8( ) T Cells in Cancer and Cancer Immunotherapy. British Journal of Cancer, 124, 359-367. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Blees, A., Januliene, D., Hofmann, T., et al. (2017) Structure of the Human MHC-I Peptide-Loading Complex. Nature, 551, 525-528. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Carretero, F.J., Campo, A.B.D., Flores-Martin, J.F., et al. (2016) Frequent HLA Class I Alterations in Human Prostate Cancer: Molecular Mechanisms and Clinical Relevance. Cancer Immunology Immunotherapy, 65, 47-59. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Pulido, M., Chamorro, V., Romero, I., et al. (2020) Restoration of MHC-I on Tumor Cells by Fhit Transfection Promotes Immune Rejection and Acts as an Individualized Immunotherapeutic Vaccine. Cancers (Basel), 12, Article No. 1563. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Lim, S.Y., Shklovskaya, E., Lee, J.H., et al. (2023) The Molecular and Functional Landscape of Resistance to Immune Checkpoint Blockade in Melanoma. Nature Communications, 14, Article No. 1516. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Ennishi, D., Takata, K., Beguelin, W., et al. (2019) Molecular and Genetic Characterization of MHC Deficiency Identifies EZH2 as Therapeutic Target for Enhancing Immune Recognition. Cancer Discovery, 9, 546-563. [Google Scholar] [CrossRef]
|
|
[14]
|
Dhatchinamoorthy, K., Colbert, J.D. and Rock, K.L. (2021) Cancer Immune Evasion through Loss of MHC Class I Antigen Presentation. Frontiers in Immunology, 12, Article ID: 636568. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Shklovskaya, E., Lee, J.H., Lim, S.Y., et al. (2020) Tumor MHC Expression Guides First-Line Immunotherapy Selection in Melanoma. Cancers (Basel), 12, Article No. 3374. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Liu, D., Schilling, B., Liu, D., et al. (2019) Integrative Molecular and Clinical Modeling of Clinical Outcomes to PD1 Blockade in Patients with Metastatic Melanoma. Nature Medicine, 25, 1916-1927. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Hugo, W., Zaretsky, J.M., Sun, L., et al. (2016) Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma. Cell, 165, 35-44. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
桑宸, 高强. 肝内胆管癌起源细胞的研究进展和临床启示[J]. 中国肿瘤临床, 2023, 50(6): 286-290.
|
|
[19]
|
Yoshihama, S., Roszik, J., Downs, I., et al. (2016) NLRC5/MHC Class I Transactivator Is a Target for Immune Evasion in Cancer. Proceedings of the National Academy of Sciences of the United States of America, 113, 5999-6004. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Fangazio, M., Ladewig, E., Gomez, K., et al. (2021) Genetic Mechanisms of HLA-I Loss and Immune Escape in Diffuse Large B Cell Lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 118, e2104504118. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Booman, M., Douwes, J., Glas, A.M., et al. (2006) Mechanisms and Effects of Loss of Human Leukocyte Antigen Class II Expression in Immune-Privileged Site-Associated B-Cell Lymphoma. Clinical Cancer Research, 12, 2698-2705. [Google Scholar] [CrossRef]
|
|
[22]
|
Rimsza, L.M., Farinha, P., Fuchs, D.A., et al. (2007) HLA-DR Protein Status Predicts Survival in Patients with Diffuse Large B-Cell Lymphoma Treated on the MACOP-B Chemotherapy Regimen. Leukemia & Lymphoma, 48, 542-546. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Brown, P.J., Wong, K.K., Felce, S.L., et al. (2016) FOXP1 Suppresses Immune Response Signatures and MHC Class II Expression in Activated B-Cell-Like Diffuse Large B-Cell Lymphomas. Leukemia, 30, 605-616. [Google Scholar] [CrossRef] [PubMed]
|