|
[1]
|
Torre, L.A., Siegel, R.L. and Jemal, A. (2016) Lung Cancer Statistics. In: Ahmad, A. and Gadgeel, S., Eds., Lung Cancer and Personalized Medicine, Springer, Berlin, 1-19. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Wu, C., Xu, B., Zhou, Y., Ji, M., Zhang, D., Jiang, J. and Wu, C. (2016) Correlation between Serum IL-1β and MiR-144-3p as Well as Their Prognostic Values in LUAD and LUSC Patients. Oncotarget, 7, 85876-85887. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Wang, Z., Zhang, J., Shi, S., Ma, H., Wang, D., Zuo, C., Zhang, Q. and Lian, C. (2023) Predicting Lung Adenocarcinoma Prognosis, Immune Escape, and Pharmacomic Profile from Arginine and Proline-Related Genes. Scientific Reports, 13, Article No. 15198. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Wu, K., House, L., Liu, W. and Cho, W.C.S. (2012) Personalized Targeted Therapy for Lung Cancer. International Journal of Molecular Sciences, 13, 11471-11496. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Su, K., Wang, N., Shao, Q., Liu, H., Zhao, B. and Ma, S. (2021) The Role of a CeRNA Regulatory Network Based on LncRNA MALAT1 Site in Cancer Progression. Biomedicine & Pharmacotherapy, 137, Article ID: 111389. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Salmena, L., Poliseno, L., Tay, Y., Kats, L. and Pandolfi, P.P. (2011) A CeRNA Hypothesis: The Rosetta Stone of a Hidden RNA Language? Cell, 146, 353-358. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Morita, K., Suzuki, K., Maeda, S., et al. (2017) Genetic Regulation of the RUNX Transcription Factor Family Has Antitumor Effects. The Journal of Clinical Investigation, 127, 2815-2828. [Google Scholar] [CrossRef]
|
|
[8]
|
Le, T.D., Liu, L., Zhang, J., Liu, B. and Li, J. (2015) From MiRNA Regulation to MiRNA-TF Co-Regulation: Computational Approaches and Challenges. Briefings in Bioinformatics, 16, 475-496. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Gurung, R., Masood, M., Singh, P., Jha, P., Sinha, A., Ajmeriya, S., Sharma, M., Dohare, R. and Haque, M.M. (2024) Uncovering the Role of Aquaporin and Chromobox Family Members as Potential Biomarkers in Head and Neck Squamous Cell Carcinoma via Integrative Multiomics and in Silico Approach. Journal of Applied Genetics. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Alsayed, R., Sheikhan, K., Alam, M.A., Buddenkotte, J., Steinhoff, M., Uddin, S. and Ahmad, A. (2023) Epigenetic Programing of Cancer Stemness by Transcription Factors-Non-Coding RNAs Interactions. Seminars in Cancer Biology, 92, 74-83. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Vinchure, O.S. and Kulshreshtha, R. (2021) MiR-490: A Potential Biomarker and Therapeutic Target in Cancer and Other Diseases. Journal of Cellular Physiology, 236, 3178-3193. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Giannareas, N., Zhang, Q., Yang, X., et al. (2022) Extensive Germline-Somatic Interplay Contributes to Prostate Cancer Progression through HNF1B Co-Option of TMPRSS2-ERG. Nature Communications, 13, Article No. 7320. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Wang, H., Li, J., Wang, S., et al. (2021) Contribution of Structural Accessibility to the Cooperative Relationship of TF-LncRNA in Myopia. Briefings in Bioinformatics, 22, bbab082. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zhang, X., Liang, Z., Zhang, Y., Dai, K., Zhu, M., Wang, J. and Hu, X. (2020) Comprehensive Analysis of Long Non-Coding RNAs Expression Pattern in the Pathogenesis of Pulmonary Tuberculosis. Genomics, 112, 1970-1977. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Tong, Z., Cui, Q., Wang, J. and Zhou, Y. (2019) TransmiR V2.0: An Updated Transcription Factor-MicroRNA Regulation Database. Nucleic Acids Research, 47, D253-D258. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Terekhanova, N.V., Karpova, A., Liang, W.W., et al. (2023) Epigenetic Regulation during Cancer Transitions across 11 Tumour Types. Nature, 623, 432-441. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Ding, D., Xu, C., Zhang, J., et al. (2024) Revealing Underlying Regulatory Mechanisms of LINC00313 in Osimertinib-Resistant LUAD Cells by CeRNA Network Analysis. Translational Oncology, 43, Article ID: 101895. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Wei, X., Yi, X., Liu, J., Sui, X., Li, L., Li, M., Lv, H. and Yi, H. (2024) Circ-Phkb Promotes Cell Apoptosis and Inflammation in LPS-Induced Alveolar Macrophages via the TLR4/MyD88/NF-KB/CCL2 Axis. Respiratory Research, 25, Article No. 62. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Zhang, C., Yu, Z., Yang, S., Liu, Y., Song, J., Mao, J., Li, M. and Zhao, Y. (2024) ZNF460-Mediated CircRPPH1 Promotes TNBC Progression through ITGA5-Induced FAK/PI3K/AKT Activation in a CeRNA Manner. Molecular Cancer, 23, Article No. 33. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Kumagai, S., Koyama, S., Itahashi, K., et al. (2022) Lactic Acid Promotes PD-1 Expression in Regulatory T Cells in Highly Glycolytic Tumor Microenvironments. Cancer Cell, 40, 201-218.E9.
|
|
[22]
|
Contat, C., Ancey, P.B., Zangger, N., et al. (2020) Combined Deletion of Glut1 and Glut3 Impairs Lung Adenocarcinoma Growth. ELife, 9, e53618. [Google Scholar] [CrossRef]
|
|
[23]
|
Saxton, R.A. and Sabatini, D.M. (2017) MTOR Signaling in Growth, Metabolism, and Disease. Cell, 168, 960-976. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Chen, J., Ou, Y., Luo, R., et al. (2021) SAR1B Senses Leucine Levels to Regulate MTORC1 Signalling. Nature, 596, 281-284. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Shi, D.D., Guo, J.A., Hoffman, H.I., et al. (2022) Therapeutic Avenues for Cancer Neuroscience: Translational Frontiers and Clinical Opportunities. The Lancet. Oncology, 23, E62-E74. [Google Scholar] [CrossRef]
|
|
[26]
|
Xu, Y., Yan, J., Tao, Y., et al. (2022) Pituitary Hormone α-MSH Promotes Tumor-Induced Myelopoiesis and Immunosuppression. Science (New York, N.Y.), 377, 1085-1091. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Chen, D., Xiao, Y. and Zhong, K. (2022) Risk Factors and Pathogenic Mechanism for Secondary Primary Lung Cancer in Breast Cancer Patients: A Review. Chinese Journal of Lung Cancer, 25, 750-755.
|
|
[28]
|
Imbert, A., Chaffanet, M., Essioux, L., et al. (1996) Integrated Map of the Chromosome 8p12-p21 Region, a Region Involved in Human Cancers and Werner Syndrome. Genomics, 32, 29-38. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Shen, Z., Chen, B., Gan, X., et al. (2016) Methylation of Neurofilament Light Polypeptide Promoter Is Associated with Cell Invasion and Metastasis in NSCLC. Biochemical and Biophysical Research Communications, 470, 627-634. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Wlodarczyk, B., Gasiorowska, A., Borkowska, A. and Malecka-Panas, E. (2017) Evaluation of Insulin-Like Growth Factor (IGF-1) and Retinol Binding Protein (RBP-4) Levels in Patients with Newly Diagnosed Pancreatic Adenocarcinoma (PDAC). Pancreatology, 17, 623-628. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Wang, D.D., Zhao, Y.M., Wang, L., et al. (2011) Preoperative Serum Retinol-Binding Protein 4 Is Associated with the Prognosis of Patients with Hepatocellular Carcinoma after Curative Resection. Journal of Cancer Research and Clinical Oncology, 137, 651-658. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Tang, W., Li, X., Ma, Z.Z. and Li, C.Y. (2018) Significance of Retinol-Binding Protein Expression in Patients with Acute Myeloid Leukemia. Journal of Experimental Hematology, 26, 417-421.
|
|
[33]
|
Hu, X., Huang, W., Wang, F., Dai, Y., Hu, X., Yue, D. and Wang, S. (2020) Serum Levels of Retinol-Binding Protein 4 and the Risk of Non-Small Cell Lung Cancer: A Case-Control Study. Medicine, 99, E21254. [Google Scholar] [CrossRef]
|
|
[34]
|
Mosesson, M.W. (2005) Fibrinogen and Fibrin Structure and Functions. Journal of Thrombosis and Haemostasis: JTH, 3, 1894-1904. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Wang, M., Zhang, G., Zhang, Y., et al. (2020) Fibrinogen Alpha Chain Knockout Promotes Tumor Growth and Metastasis through Integrin-AKT Signaling Pathway in Lung Cancer. Molecular Cancer Research: MCR, 18, 943-954. [Google Scholar] [CrossRef]
|
|
[36]
|
Pardridge, W.M., Boado, R.J. and Farrell, C.R. (1990) Brain-Type Glucose Transporter (GLUT-1) Is Selectively Localized to the Blood-Brain Barrier. Studies with Quantitative Western Blotting and in Situ Hybridization. The Journal of Biological Chemistry, 265, 18035-18040. [Google Scholar] [CrossRef]
|
|
[37]
|
Amann, T., Maegdefrau, U., Hartmann, A., et al. (2009) GLUT1 Expression Is Increased in Hepatocellular Carcinoma and Promotes Tumorigenesis. The American Journal of Pathology, 174, 1544-1552. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Krzeslak, A., Wojcik-Krowiranda, K., Forma, E., Jozwiak, P., Romanowicz, H., Bienkiewicz, A. and Brys, M. (2012) Expression of GLUT1 and GLUT3 Glucose Transporters in Endometrial and Breast Cancers. Pathology Oncology Research: POR, 18, 721-728. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Wachi, S., Yoneda, K. and Wu, R. (2005) Interactome-Transcriptome Analysis Reveals the High Centrality of Genes Differentially Expressed in Lung Cancer Tissues. Bioinformatics (Oxford, England), 21, 4205-4208. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Wang, Y., Shi, S., Ding, Y., Wang, Z., Liu, S., Yang, J. and Xu, T. (2017) Metabolic Reprogramming Induced by Inhibition of SLC2A1 Suppresses Tumor Progression in Lung Adenocarcinoma. International Journal of Clinical and Experimental Pathology, 10, 10759-10769.
|
|
[41]
|
Nemkov, T., Stephenson, D., Erickson, C., et al. (2024) Regulation of Kynurenine Metabolism by Blood Donor Genetics and Biology Impacts Red Cell Hemolysis in Vitro and in Vivo. Blood, 143, 456-472. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Yao, Y., Wang, X., Guan, J., et al. (2023) Metabolomic Differentiation of Benign vs Malignant Pulmonary Nodules with High Specificity via High-Resolution Mass Spectrometry Analysis of Patient Sera. Nature Communications, 14, Article No. 2339. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Chu, H.Y., Chen, Z., Wang, L., et al. (2021) Dickkopf-1: A Promising Target for Cancer Immunotherapy. Frontiers in Immunology, 12, Article ID: 658097. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Zhu, G., Song, J., Chen, W., Yuan, D., Wang, W., Chen, X., Liu, H., Su, H. and Zhu, J. (2021) Expression and Role of Dickkopf-1 (Dkk1) in Tumors: From the Cells to the Patients. Cancer Management and Research, 13, 659-675. [Google Scholar] [CrossRef]
|
|
[45]
|
Licchesi, J.D., Westra, W.H., Hooker, C.M., Machida, E.O., Baylin, S.B. and Herman, J.G. (2008) Epigenetic Alteration of Wnt Pathway Antagonists in Progressive Glandular Neoplasia of the Lung. Carcinogenesis, 29, 895-904. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Shimura, T., Toiyama, Y., Hiro, J., et al. (2018) Monitoring Perioperative Serum Albumin Can Identify Anastomotic Leakage in Colorectal Cancer Patients with Curative Intent. Asian Journal of Surgery, 41, 30-38. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Wu, M.T., He, S.Y., Chen, S.L., Li, L.F., He, Z.Q., Zhu, Y.Y., He, X. and Chen, H. (2019) Clinical and Prognostic Implications of Pretreatment Albumin to C-Reactive Protein Ratio in Patients with Hepatocellular Carcinoma. BMC Cancer, 19, Article No. 538. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Mantzorou, M., Koutelidakis, A., Theocharis, S. and Giaginis, C. (2017) Clinical Value of Nutritional Status in Cancer: What Is Its Impact and How It Affects Disease Progression and Prognosis? Nutrition and Cancer, 69, 1151-1176. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Gras, J. (2012) Semuloparin for the Prevention of Venous Thromboembolic Events in Cancer Patients. Drugs of Today (Barcelona, Spain: 1998), 48, 451-457. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Ravasco, P., Monteiro-Grillo, I. and Camilo, M. (2012) Individualized Nutrition Intervention Is of Major Benefit to Colorectal Cancer Patients: Long-Term Follow-Up of a Randomized Controlled Trial of Nutritional Therapy. The American Journal of Clinical Nutrition, 96, 1346-1353. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Egenvall, M., Mörner, M., Martling, A. and Gunnarsson, U. (2018) Prediction of Outcome after Curative Surgery for Colorectal Cancer: Preoperative Haemoglobin, C-Reactive Protein and Albumin. Colorectal Disease: The Official Journal of the Association of Coloproctology of Great Britain and Ireland, 20, 26-34. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Vazeille, C., Jouinot, A., Durand, J.P., Neveux, N., Boudou-Rouquette, P., Huillard, O., Alexandre, J., Cynober, L. and Goldwasser, F. (2017) Relation between Hypermetabolism, Cachexia, and Survival in Cancer Patients: A Prospective Study in 390 Cancer Patients before Initiation of Anticancer Therapy. The American Journal of Clinical Nutrition, 105, 1139-1147. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Zhang, Y. and Xiao, G. (2019) Prognostic Significance of the Ratio of Fibrinogen and Albumin in Human Malignancies: A Meta-Analysis. Cancer Management and Research, 11, 3381-3393. [Google Scholar] [CrossRef]
|
|
[54]
|
Mizejewski, G.J. (2004) Biological Roles of Alpha-Fetoprotein during Pregnancy and Perinatal Development. Experimental Biology and Medicine (Maywood, N.J.), 229, 439-463. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Yang, J.Y., Li, X., Gao, L., Teng, Z.H. and Liu, W.C. (2012) Co-Transfection of Dendritic Cells with AFP and IL-2 Genes Enhances the Induction of Tumor Antigen-Specific Antitumor Immunity. Experimental and Therapeutic Medicine, 4, 655-660. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Llovet, J.M., Montal, R., Sia, D. and Finn, R.S. (2018) Molecular Therapies and Precision Medicine for Hepatocellular Carcinoma. Nature Reviews. Clinical Oncology, 15, 599-616. [Google Scholar] [CrossRef] [PubMed]
|