| [1] | Xi, Z.Z., Long, X., Zhou, S., Huang, L., Song G., Hou, H.T. and Wang, L. (2016) Opposing Coils Transient Electromagnetic Method for Shallow Subsurface Detection. Chinese Journal of Geophysics, 59, 551-559. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [2] | Wang, Y., Xi, Z.Z., Jiang, H., Hou, H.T., Zhou, S. and Fan, F.L. (2017) The Application Research on the Detection of Karst Disease of Airport Runway Based on OCTEM. Geophysical and Geochemical Exploration, 41, 360-363. | 
                     
                                
                                    
                                        | [3] | Long, X., Xi, Z.Z., Zhou, S., Hou, H.T., Wang, L. and Xue, J.P. (2020) Detection Capability of Opposing Coils Transient Electromagnetic Method for Thin Layers. Progress in Geophysics, 35, 753-759. | 
                     
                                
                                    
                                        | [4] | Zhang, X.Y., Li, N.B. and Pei, S.J. (2022) The Application of Opposing Coils Transient Electromagnetics Method in Subway Karst Investigation. Railway Investigation and Surveying, 48, 52-56. | 
                     
                                
                                    
                                        | [5] | Wang, L., Li, H., Wang, D.H., Zhou, S., Zhang, W., Long, X., Yang, J. and Wang, Q. (2023) Urban Geophysical Exploration: Case Study in Chengdu International Bio-City. Journal of Geophysics and Engineering, 20, 830-840. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [6] | Fan, T., Xue, G.Q., Li, P., Yan, B., Bao, L., Song, J.Q., Ren, X. and Li, Z.L. (2022) TEM Real-Time Inversion Based on Long-Short Term Memory Network. Chinese Journal of Geophysics, 65, 3650-3663. | 
                     
                                
                                    
                                        | [7] | Sun, H.F., Zhang, N.Y., Liu, S.B., Li, D.R., Chen, C.D., Ye, Q.Y., Xue, Y.G. and Yang, Y. (2019) L1-Norm Based Nonlinear Inversion of Transient Electromagnetic Data. Chinese Journal of Geophysics, 62, 4860-4873. | 
                     
                                
                                    
                                        | [8] | Ling, T.H., Qin, J., Song, Q. and Hua, P. (2020) Intelligent Displacement Back-Analysis Based on Improved Particle Swarm Optimization and Neural Network and Its Application. Journal of Railway Science and Engineering, 17, 2181-2190. | 
                     
                                
                                    
                                        | [9] | Xu, Z.Y., Fu, N.Y., Zhou, J. and Fu, Z.H. (2022) Comparison of Nonlinear Optimization Inversion Algorithms of Transient Electromagnetic Method. Journal of Jilin University (Earth Science Edition), 3, 744-753. | 
                     
                                
                                    
                                        | [10] | Wang, H., Liu, M.L., Xi, Z.Z., Peng, X.L. and He, H. (2018) Magnetotelluric Inversion Based on BP Neural Network Optimized by Genetic Algorithm. Chinese Journal of Geophysics, 61, 1563-1575. | 
                     
                                
                                    
                                        | [11] | Wang, H., Yan, J.Y., Fu, G.M. and Wang, X. (2020) Current Status and Application Prospect of Deep Learning in Geophysics. Progress in Geophysics, 35, 642-655. | 
                     
                                
                                    
                                        | [12] | Yu, S.B., Sheng, Y.H. and Zhang, Y. (2023) CG-DAE: A Noise Suppression Method for Two-Dimensional Transient Electromagnetic Data Based on Deep Learning. Journal of Geophysics and Engineering, 20, 600-609. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [13] | Davood, M. (2020) One-Dimensional Deep Learning Inversion of Electromagnetic Induction Data Using Convolutional Neural Network. Geophysical Journal International, 222, 247-259. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [14] | Vladimir, P. and Andrei, S. (2021) Inversion of 1D Frequency-and Time-Domain Electromagnetic Data with Convolutional Neural Networks. Computers & Geosciences, 149, Article 104681. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [15] | Wu, S.H., Huang, Q.H. and Zhao, L. (2021) Convolutional Neural Network Inversion of Airborne Transient Electromagnetic Data. Geophysical Prospecting, 69, 1761-1772. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [16] | Liu, W., Wang, H., Xi, Z.Z., Zhang, R.Q. and Huang, X.D. (2022) Physics-Driven Deep Learning Inversion with Application to Magnetotelluric. Remote Sensing, 14, Article 3218. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [17] | Wang, Y.Q., Wang, Q., Lu, W.K. and Li, H. (2022) Physics-Constrained Seismic Impedance Inversion Based on Deep Learning. IEEE Geoscience and Remote Sensing Letters, 19, 1-5. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [18] | Li, F.D., Guo, Z.W., Pan, X.P., Liu, J., Wang, Y. and Gao, D.W. (2022) Deep Learning with Adaptive Attention for Seismic Velocity Inversion. Remote Sensing, 14, Article 3810. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [19] | Liu, Z.G., Chen, H., Ren, Z.Y., Tang, J.T., Xu, Z.M., Chen, Y.P. and Liu, X. (2021) Deep Learning Audio Magnetotellurics Inversion Using Residual-Based Deep Convolution Neural Network. Journal of Applied Geophysics, 188, Article 104309. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [20] | Wu, X., Xue, G.Q., Zhao, Y., Lv, P.F., Zhou, Z. and Shi, J.J. (2022) A Deep Learning Estimation of the Earth Resistivity Model for the Airborne Transient Electromagnetic Observation. Journal of Geophysical Research: Solid Earth, 127, e2021JB023185. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [21] | Liu, X, Craven, A.J. and Tschirhart, V. (2023) Retrieval of Subsurface Resistivity from Magnetotelluric Data Using a Deep-Learning-Based Inversion Technique, Minerals, 13, Article 461. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [22] | Wang, L., Long, X., Wang, T.T., Xi, Z.Z., Chen, X.P., Zhong, M.F. and Dong, Z.Q. (2022) Application of the Opposing-Coils Transient Electromagnetic Method in Detection of Urban Shallow Cavities. Geophysical and Geochemical Exploration, 46, 1289-1295. | 
                     
                                
                                    
                                        | [23] | Ronneberger, O., Fischer, P. and Brox, T. (2015) U-Net: Convolutional Networks for Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, 5-9 October 2015, 234-241. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [24] | He, K.M., Zhang X.Y., Ren S.Q. and Sun, J. (2015) Deep Residual Learning for Image Recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 27-30 June 2016, 770-778. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [25] | Kingma, D. and Ba, J. (2014) Adam: A Method for Stochastic Optimization. arXiv: 1412.6980. [Google Scholar] [CrossRef] |