| [1] | Fu, B., Ouyang, Z., Shi, P., et al. (2021) Current Condition and Protection Strategies of Qinghai-Tibet Plateau Ecological Security Barrier. Bulletin of Chinese Academy of Sciences (Chinese Version), 36, 1298-1306. | 
                     
                                
                                    
                                        | [2] | Li, S., Zhang, H., Zhou, X., et al. (2020) Enhancing Protected Areas for Biodiversity and Ecosystem Services in the Qinghai-Tibet Plateau. Ecosystem Services, 43, Article 101090. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [3] | Wu, D., Liu, D., Wang, T., et al. (2021) Carbon Turnover Times Shape Topsoil Carbon Difference between Tibetan Plateau and Arctic Tundra. Science Bulletin, 66, 1698-1704. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [4] | Zhou, H., Yang, X., Zhou, C., et al. (2023) Alpine Grassland Degradation and Its Restoration in the Qinghai-Tibet Plateau. Grasses, 2, 31-46. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [5] | Bi, X., Chang, B., Hou, F., et al. (2021) Assessment of Spatio-Temporal Variation and Driving Mechanism of Ecological Environment Quality in the Arid Regions of Central Asia, Xinjiang. International Journal of Environmental Research and Public Health, 18, Article 7111. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [6] | Nakano, T., Nemoto, M. and Shinoda, M. (2008) Environmental Controls on Photosynthetic Production and Ecosystem Respiration in Semi-Arid Grasslands of Mongolia. Agricultural and Forest Meteorology, 148, 1456-1466. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [7] | Kang, X., Hao, Y., Li, C., et al. (2011) Modeling Impacts of Climate Change on Carbon Dynamics in a Steppe Ecosystem in Inner Mongolia, China. Journal of Soils and Sediments, 11, 562-576. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [8] | Zhang, L., Wylie, B., Loveland, T., et al. (2007) Evaluation and Comparison of Gross Primary Production Estimates for the Northern Great Plains Grasslands. Remote Sensing of Environment, 106, 173-189. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [9] | Sims, P.L., Singh, J.S. and Lauenroth, W.K. (1978) The Structure and Function of Ten Western North American Grasslands: I. Abiotic and Vegetational Characteristics. Journal of Ecology, 66, 251-285. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [10] | Erschbamer, B., Grabherr, G. and Reisigl, H. (1983) Spatial Pattern in Dry Grassland Communities of the Central Alps and Its Ecophysiological Significance. Vegetatio, 54, 143-151. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [11] | Rognli, O.A., Pecetti, L., Kovi, M.R., et al. (2021) Grass and Legume Breeding Matching the Future Needs of European Grassland Farming. Grass and Forage Science, 76, 175-185. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [12] | Jin, Z., Zhuang, Q., He, J.S., et al. (2015) Net Exchanges of Methane and Carbon Dioxide on the Qinghai-Tibetan Plateau from 1979 to 2100. Environmental Research Letters, 10, Article 085007. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [13] | Li, J., Gong, J., Guldmann, J.M., et al. (2020) Carbon Dynamics in the Northeastern Qinghai-Tibetan Plateau from 1990 to 2030 Using Landsat Land Use/Cover Change Data. Remote Sensing, 12, Article 528. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [14] | Piao, S., He, Y., Wang, X., et al. (2010) Estimation of China’s Terrestrial Ecosystem Carbon Sink: Methods, Progress and Prospects. Nature, 467, 43-51. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [15] | Chen, H., Ju, P., Zhu, Q., et al. (2022) Carbon and Nitrogen Cycling on the Qinghai-Tibetan Plateau. Nature Reviews Earth & Environment, 3, 701-716. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [16] | Mu, C., Abbott, B.W., Norris, A.J., et al. (2020) The Status and Stability of Permafrost Carbon on the Tibetan Plateau. Earth-Science Reviews, 211, Article 103433. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [17] | Zhang, X.Z., Shen, Z.X. and Fu, G. (2015) A Meta-Analysis of the Effects of Experimental Warming on Soil Carbon and Nitrogen Dynamics on the Tibetan Plateau. Applied Soil Ecology, 87, 32-38. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [18] | Favre, A., Paeckert, M., Pauls, S.U., et al. (2015) The Role of the Uplift of the Qinghai-Tibetan Plateau for the Evolution of Tibetan Biotas. Biological Reviews, 90, 236-253. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [19] | Xuanlan, Z., Junbang, W., Hui, Y., et al. (2021) The Bowen Ratio of an Alpine Grassland in Three-River Headwaters, Qinghai-Tibet Plateau, from 2001 to 2018. Journal of Resources and Ecology, 12, 305-318. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [20] | Peng, H., Chi, J., Yao, H., et al. (2021) Methane Emissions Offset Net Carbon Dioxide Uptake From an Alpine Peatland on the Eastern Qinghai-Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 126, e2021JD034671. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [21] | He, P., Ma, X., Meng, X., et al. (2022) Spatiotemporal Evolutionary and Mechanism Analysis of Grassland GPP in China. Ecological Indicators, 143, Article 109323. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [22] | Fu, G., Zhang, X., Zhang, Y., et al. (2013) Experimental Warming does not Enhance Gross Primary Production and Above-Ground Biomass in the Alpine Meadow of Tibet. Journal of Applied Remote Sensing, 7, Article 073505. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [23] | He, P., Ma, X., Han, Z., et al. (2022) Uncertainties of Gross Primary Productivity of Chinese Grasslands Based on Multi-Source Estimation. Frontiers in Environmental Science, 10, Article 928351. https://www.frontiersin.org/articles/10.3389/fenvs.2022.928351 [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [24] | 朴世龙, 何悦, 王旭辉, 陈发虎. 中国陆地生态系统碳汇估算: 方法、进展、展望[J]. 中国科学: 地球科学, 2022, 52(6): 1010-1020. | 
                     
                                
                                    
                                        | [25] | Wang, X., Ma, M., Song, Y., et al. (2014) Coupling of a Biogeochemical Model with a Simultaneous Heat and Water Model and Its Evaluation at an Alpine Meadow Site. Environmental Earth Sciences, 72, 4085-4096. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [26] | Wu, C. and Wang, T. (2022) Evaluating Cumulative Drought Effect on Global Vegetation Photosynthesis Using Numerous GPP Products. Frontiers in Environmental Science, 10, Article 908875.https://www.frontiersin.org/articles/10.3389/fenvs.2022.908875 [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [27] | Yang, R., Wang, J., Zeng, N., et al. (2022) Divergent Historical GPP Trends among State-of-the-Art Multi-Model Simulations and Satellite-Based Products. Earth System Dynamics, 13, 833-849. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [28] | White, M.A., Thornton, P.E., Running, S.W., et al. (2000) Parameterization and Sensitivity Analysis of the BIOME-BGC Terrestrial Ecosystem Model: Net Primary Production Controls. Earth Interactions, 4, 1-85. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [29] | Running, S.W. and Gower, S.T. (1991) FOREST-BGC, A General Model of Forest Ecosystem Processes for Regional Applications. II. Dynamic Carbon Allocation and Nitrogen Budgets. Tree Physiology, 9, 147-160. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [30] | Zhang, Y. and Ye, A. (2022) Uncertainty Analysis of Multiple Terrestrial Gross Primary Productivity Products. Global Ecology and Biogeography, 31, 2204-2218. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [31] | Xiao, F., Liu, Q. and Xu, Y. (2022) Estimation of Terrestrial Net Primary Productivity in the Yellow River Basin of China Using Light Use Efficiency Model. Sustainability, 14, Article 7399. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [32] | You, Y., Wang, S., Ma, Y., et al. (2019) Improved Modeling of Gross Primary Productivity of Alpine Grasslands on the Tibetan Plateau Using the Biome-BGC Model. Remote Sensing, 11, Article 1287. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [33] | Lu, H.L., Li, F.F., Gong, T.L., et al. (2023) Temporal Variability of Precipitation Over the Qinghai-Tibetan Plateau and Its Surrounding Areas in the Last 40 Years. International Journal of Climatology, 43, 1912-1934. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [34] | Genxu, W., Ju, Q., Guodong, C., et al. (2002) Soil Organic Carbon Pool of Grassland Soils on the Qinghai-Tibetan Plateau and Its Global Implication. Science of the Total Environment, 291, 207-217. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [35] | Han, Q., Luo, G., Li, C., et al. (2014) Modeling the Grazing Effect on Dry Grassland Carbon Cycling with Biome-BGC Model. Ecological Complexity, 17, 149-157. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [36] | Lellei-Kovács, E., Barcza, Z., Hidy, D., et al. (2014) Application of Biome-BGC MuSo in Managed Grassland Ecosystems in the Euro-Mediteranean Region. FACCE MACSUR Reports, 3, 3-58. | 
                     
                                
                                    
                                        | [37] | Chen, Y. and Xiao, W. (2019) Estimation of Forest NPP and Carbon Sequestration in the Three Gorges Reservoir Area, Using the Biome-BGC Model. Forests, 10, Article 149. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [38] | Zheng, Y., Shen, R., Wang, Y., et al. (2020) Improved Estimate of Global Gross Primary Production for Reproducing Its Long-Term Variation, 1982-2017. Earth System Science Data, 12, 2725-2746. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [39] | 丁光旭, 郭家力, 汤正阳, 等. 多种降水再分析数据在长江流域的适用性对比[J]. 人民长江, 2022, 53(9): 72-79. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [40] | 李晓东. 青海湖水体对流域气候和生态环境变化的响应[D]: [博士学位论文]. 兰州: 兰州大学, 2022.[CrossRef] | 
                     
                                
                                    
                                        | [41] | Zhu, Z., Sun, X., Wen, X., et al. (2006) Study on the Processing Method of Nighttime CO2 Eddy Covariance Flux Data in ChinaFLUX. Science in China Series D: Earth Sciences, 49, 36-46. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [42] | Chen, S., Sui, L., Liu, L., et al. (2022) Effect of the Partitioning of Diffuse and Direct APAR on GPP Estimation. Remote Sensing, 14, Article 57. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [43] | Teubner, I.E., Forkel, M., Wild, B., et al. (2021) Impact of Temperature and Water Availability on Microwave-Derived Gross Primary Production. Biogeosciences, 18, 3285-3308. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [44] | Liu, J. and Deng, X. (2010) Progress of the Research Methodologies on the Temporal and Spatial Process of LUCC. Chinese Science Bulletin, 55, 1354-1362. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [45] | Ma, M., Yuan, W., Dong, J., et al. (2018) Large-Scale Estimates of Gross Primary Production on the Qinghai-Tibet Plateau Based on Remote Sensing Data. International Journal of Digital Earth, 11, 1166-1183. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [46] | Sun, S., Che, T., Li, H., et al. (2019) Water and Carbon Dioxide Exchange of an Alpine Meadow Ecosystem in the Northeastern Tibetan Plateau Is Energy-Limited. Agricultural and Forest Meteorology, 275, 283-295. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [47] | 马敏娜, 袁文平. 青藏高原总初级生产力估算的模型差异[J]. 遥感技术与应用, 2017, 32(3): 406-418. | 
                     
                                
                                    
                                        | [48] | Yi, S.H., Xiang, B., Meng, B.P., et al. (2019) Modeling the Carbon Dynamics of Alpine Grassland in the Qinghai-Tibetan Plateau under Scenarios of 1.5℃ and 2℃ Global Warming. Advances in Climate Change Research, 10, 80-91. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [49] | Deng, M., Meng, X., Lu, Y., et al. (2022) The Response of Vegetation to Regional Climate Change on the Tibetan Plateau Based on Remote Sensing Products and the Dynamic Global Vegetation Model. Remote Sensing, 14, Article 3337. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [50] | Wang, Z., Cao, S., Cao, G., et al. (2021) Effects of Vegetation Phenology on Vegetation Productivity in the Qinghai Lake Basin of the Northeastern Qinghai-Tibet Plateau. Arabian Journal of Geosciences, 14, Article No. 1030. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [51] | Zhang, H. and Dou, R. (2020) Interannual and Seasonal Variability in Evapotranspiration of Alpine Meadow in the Qinghai-Tibetan Plateau. Arabian Journal of Geosciences, 13, Article No. 968. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [52] | Wu, H., Fu, C., Wu, H., et al. (2020) Plant Hydraulic Stress Strategy Improves Model Predictions of the Response of Gross Primary Productivity to Drought across China. Journal of Geophysical Research: Atmospheres, 125, e2020JD033476. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [53] | Zhang, Y., Xiao, X., Wu, X., et al. (2017) A Global Moderate Resolution Dataset of Gross Primary Production of Vegetation for 2000-2016. Scientific Data, 4, Article No. 170165. [Google Scholar] [CrossRef] [PubMed] |