|
[1]
|
Singer, M., Deutschman, C.S., Seymour, C.W., Shankar-Hari, M., Annane, D., Bauer, M., Bellomo, R., Bernard, G.R., Chiche, J.-D., Coopersmith, C.M., Hotchkiss, R.S., Levy, M.M., Marshall, J.C., Martin, G.S., Opal, S.M., Rubenfeld, G.D., van der Poll, T., Vincent, J.-L. and Angus, D.C. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315, 801-810. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Bagshaw, S.M., Uchino, S., Bellomo, R., Morimatsu, H., Morgera, S., Schetz, M., Tan, I., Bouman, C., Macedo, E., Gibney, N., Tolwani, A., Oudemans-van Straaten, H.M., Ronco, C. and Kellum, J.A. (2007) Septic Acute Kidney Injury in Critically Ill Patients: Clinical Characteristics and Outcomes. Clinical Journal of the American Society of Nephrology, 2, 431-439. [Google Scholar] [CrossRef]
|
|
[3]
|
Kolhe, N.V., Stevens, P.E., Crowe, A.V., Lipkin, G.W. and Harrison, D.A. (2008) Case Mix, Outcome and Activity for Patients with Severe Acute Kidney Injury during the First 24 Hours after Admission to an Adult, General Critical Care Unit: Application of Predictive Models from a Secondary Analysis of the ICNARC Case Mix Programme Database. Critical Care, 12, Article No. S2. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Bagshaw, S.M., George, C., Bellomo, R., the ANZICS Database Management Committee. (2008) Early Acute Kidney Injury and Sepsis: A Multicentre Evaluation. Critical Care, 12, Article No. R47. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Bellomo, R., Kellum, J.A., Ronco, C., Wald, R., Martensson, J., Maiden, M., Bagshaw, S.M., Glassford, N.J., Lankadeva, Y., Vaara, S.T. and Schneider, A. (2017) Acute Kidney Injury in Sepsis. Intensive Care Medicine, 43, 816-828. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Li, C., Wang, W., Xie, S., Ma, W., Fan, Q., Chen, Y., He, Y., Wang, J., Yang, Q., Li, H., Jin, J., Liu, M., Meng, X. and Wen, J. (2021) The Programmed Cell Death of Macrophages, Endothelial Cells, and Tubular Epithelial Cells in Sepsis-AKI. Frontiers in Medicine, 8, Article 796724. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
张杰, 章雄, 刘琰. 脓毒症生物标志物研究进展[J]. 中华损伤与修复杂志(电子版), 2020, 15(4): 316-321. [Google Scholar] [CrossRef]
|
|
[8]
|
Soliman, N.A. (2012) Orphan Kidney Diseases. Nephron Clinical Practice, 120, c194-c199. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Cardoso, C. and Coelho, S. (2021) Review of: “Urinary Actin, as a Potential Marker of Sepsis-Related Acute Kidney Injury: A Pilot Study.” Qeios. [Google Scholar] [CrossRef]
|
|
[10]
|
Ostermann, M., Zarbock, A., Goldstein, S., Kashani, K., Macedo, E., Murugan, R., Bell, M., Forni, L., Guzzi, L., Joannidis, M., Kane-Gill, S.L., Legrand, M., Mehta, R., Murray, P.T., Pickkers, P., Plebani, M., Prowle, J., Ricci, Z., Rimmelé, T., Rosner, M., Shaw, A.D., Kellum, J.A. and Ronco, C. (2020) Recommendations on Acute Kidney Injury Biomarkers from the Acute Disease Quality Initiative Consensus Conference: A Consensus Statement. JAMA Network Open, 3, e2019209. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Palsson, R., Colona, M.R., Hoenig, M.P., Lundquist, A.L., Novak, J.E., Perazella, M.A. and Waikar, S.S. (2020) Assessment of Interobserver Reliability of Nephrologist Examination of Urine Sediment. JAMA Network Open, 3, e2013959. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Bagshaw, S.M., Haase, M., Haase-Fielitz, A., Bennett, M., Devarajan, P. and Bellomo, R. (2012) A Prospective Evaluation of Urine Microscopy in Septic and Non-Septic Acute Kidney Injury. Nephrology Dialysis Transplantation, 27, 582-588. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Schaalan, M. and Mohamed, W. (2017) Predictive Ability of Circulating Osteoprotegerin as a Novel Biomarker for Early Detection of Acute Kidney Injury Induced by Sepsis. European Cytokine Network, 28, 52-62. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Wiersema, R., Jukarainen, S., Vaara, S.T., Poukkanen, M., Lakkisto, P., Wong, H., Linder, A., Van Der Horst, I.C.C. and Pettilä, V. (2020) Two Subphenotypes of Septic Acute Kidney Injury Are Associated with Different 90-Day Mortality and Renal Recovery. Critical Care, 24, Article No. 150. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Donato, L.J., Meeusen, J.W., Lieske, J.C., Bergmann, D., Sparwaßer, A. and Jaffe, A.S. (2018) Analytical Performance of an Immunoassay to Measure Proenkephalin. Clinical Biochemistry, 58, 72-77. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Melo, P.S.A., Andrade, P.D.O.N., Vasconcelos, R.L., Oliveira, S.C.D., Mendes, R.C.M.G. and Linhares, F.M.P. (2021) Validation of the Knowledge, Attitude and Practice Survey on Nursing Assistance during Delivery and Childbirth. Texto & Contexto Enfermagem, 30, e20200420. [Google Scholar] [CrossRef]
|
|
[17]
|
Hollinger, A., Wittebole, X., François, B., et al. (2019) Proenkephalin A 119-159 (penKid) Is an Early Biomarker of Septic Acute Kidney Injury: The Kidney in Sepsis and Septic Shock (Kid-SSS) Study. Kidney Int Rep. 2018; 3: 1424-1433. Kidney International Reports, 4, 187. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Zarbock, A., Nadim, M.K., Pickkers, P., Gomez, H., Bell, S., Joannidis, M., Kashani, K., Koyner, J.L., Pannu, N., Meersch, M., Reis, T., Rimmelé, T., Bagshaw, S.M., Bellomo, R., Cantaluppi, V., Deep, A., De Rosa, S., Perez-Fernandez, X., Husain-Syed, F., Kane-Gill, S.L., Kelly, Y., Mehta, R.L., Murray, P.T., Ostermann, M., Prowle, J., Ricci, Z., See, E.J., Schneider, A., Soranno, D.E., Tolwani, A., Villa, G., Ronco, C. and Forni, L.G. (2023) Sepsis-Associated Acute Kidney Injury: Consensus Report of the 28th Acute Disease Quality Initiative Workgroup. Nature Reviews Nephrology, 19, 401-417. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Jia, H.-M., Cheng, L., Weng, Y.-B., Wang, J.-Y., Zheng, X., Jiang, Y.-J., Xin, X., Guo, S.-Y., Chen, C.-D., Guo, F.-X., Han, Y.-Z., Zhang, T.-E. and Li, W.-X. (2022) Cell Cycle Arrest Biomarkers for Predicting Renal Recovery from Acute Kidney Injury: A Prospective Validation Study. Annals of Intensive Care, 12, Article No. 14. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Kashani, K., Al-Khafaji, A., Ardiles, T., Artigas, A., Bagshaw, S.M., Bell, M., Bihorac, A., Birkhahn, R., Cely, C.M., Chawla, L.S., Davison, D.L., Feldkamp, T., Forni, L.G., Gong, M., Gunnerson, K.J., Haase, M., Hackett, J., Honore, P. M., Hoste, E.A., Joannes-Boyau, O., Joannidis, M., Kim, P., Koyner, J.L., Laskowitz, D.T., Lissauer, M.E., Marx, G., McCullough, P.A., Mullaney, S., Ostermann, M., Rimmelé, T., Shapiro, N.I., Shaw, A.D., Shi, J., Sprague, A.M., Vincent, J.-L., Vinsonneau, C., Wagner, L., Walker, M.G., Wilkerson, R.G., Zacharowski, K. and Kellum, J.A. (2013) Discovery and Validation of Cell Cycle Arrest Biomarkers in Human Acute Kidney Injury. Critical Care, 17, Article No. R25. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Li, Z., Tie, H., Shi, R., Rossaint, J. and Zarbock, A. (2022) Urinary [TIMP-2]·[IGFBP7]-Guided Implementation of the KDIGO Bundle to Prevent Acute Kidney Injury: A Meta-Analysis. British Journal of Anaesthesia, 128, e24-e26. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Jia, H.-M., Huang, L.-F., Zheng, Y. and Li, W.-X. (2017) Diagnostic Value of Urinary Tissue Inhibitor of Metalloproteinase-2 and Insulin-Like Growth Factor Binding Protein 7 for Acute Kidney Injury: A Meta-Analysis. Critical Care, 21, Article No. 77. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Yang, L., Brooks, C.R., Xiao, S., Sabbisetti, V., Yeung, M.Y., Hsiao, L.-L., Ichimura, T., Kuchroo, V. and Bonventre, J.V. (2015) KIM-1-Mediated Phagocytosis Reduces Acute Injury to the Kidney. Journal of Clinical Investigation, 125, 1620-1636. [Google Scholar] [CrossRef]
|
|
[24]
|
Pei, Y., Zhou, G., Wang, P., Shi, F., Ma, X. and Zhu, J. (2022) Serum Cystatin C, Kidney Injury Molecule-1, Neutrophil Gelatinase-Associated Lipocalin, Klotho and Fibroblast Growth Factor-23 in the Early Prediction of Acute Kidney Injury Associated with Sepsis in a Chinese Emergency Cohort Study. European Journal of Medical Research, 27, Article No. 39. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Vaidya, V.S., Ford, G.M., Waikar, S.S., Wang, Y., Clement, M.B., Ramirez, V., Glaab, W.E., Troth, S.P., Sistare, F.D., Prozialeck, W.C., Edwards, J.R., Bobadilla, N.A., Mefferd, S.C. and Bonventre, J.V. (2009) A Rapid Urine Test for Early Detection of Kidney Injury. Kidney International, 76, 108-114. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Mishra, J., Ma, Q., Prada, A., Mitsnefes, M., Zahedi, K., Yang, J., Barasch, J. and Devarajan, P. (2003) Identification of Neutrophil Gelatinase-Associated Lipocalin as a Novel Early Urinary Biomarker for Ischemic Renal Injury. Journal of the American Society of Nephrology, 14, 2534-2543. [Google Scholar] [CrossRef]
|
|
[27]
|
Marakala, V. (2022) Neutrophil Gelatinase-Associated Lipocalin (NGAL) in Kidney Injury—A Systematic Review. Clinica Chimica Acta, 536, 135-141. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Mishra, J., Mori, K., Ma, Q., Kelly, C., Barasch, J. and Devarajan, P. (2004) Neutrophil Gelatinase-Associated Lipocalin: A Novel Early Urinary Biomarker for Cisplatin Nephrotoxicity. American Journal of Nephrology, 24, 307-315. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Si Nga, H., Medeiros, P., Menezes, P., Bridi, R., Balbi, A. and Ponce, D. (2015) Sepsis and AKI in Clinical Emergency Room Patients: The Role of Urinary NGAL. BioMed Research International, 2015, Article ID: 413751. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Wenzel, J., Spyropoulos, D., Assmann, J.C., Khan, M.A., Stölting, I., Lembrich, B., Kreißig, S., Ridder, D.A., Isermann, B. and Schwaninger, M. (2020) Endogenous THBD (Thrombomodulin) Mediates Angiogenesis in the Ischemic Brain—Brief Report. Arteriosclerosis, Thrombosis, and Vascular Biology, 40, 2837-2844. [Google Scholar] [CrossRef]
|
|
[31]
|
Li, Q., Yang, W., Zhao, K., Sun, X. and Bao, L. (2021) Thrombomodulin Gene Polymorphism and the Occurrence and Prognostic Value of Sepsis Acute Kidney Injury. Medicine, 100, e26293. [Google Scholar] [CrossRef]
|
|
[32]
|
Katayama, S. (2017) Markers of Acute Kidney Injury in Patients with Sepsis: The Role of Soluble Thrombomodulin. Critical Care, 21, Article No. 229. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Raghavan, M., Venkataraman, R. and Kellum, J.A. (2007) Sepsis-Induced Acute Renal Failure and Recovery. In: Abraham, E. and Singer, M., Eds., Mechanisms of Sepsis-Induced Organ Dysfunction and Recovery, Springer, Berlin, 393-405. [Google Scholar] [CrossRef]
|
|
[34]
|
Boekhoud, L., Koeze, J., Van Der Slikke, E.C., Bourgonje, A.R., Moser, J., Zijlstra, J.G., Muller Kobold, A.C., Bulthuis, M.L.C., Van Meurs, M., Van Goor, H. and Bouma, H.R. (2020) Acute Kidney Injury Is Associated with Lowered Plasma-Free Thiol Levels. Antioxidants, 9, Article 1135. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Van Der Slikke, E.C., Boekhoud, L., Bourgonje, A.R., Olgers, T.J., Ter Maaten, J.C., Henning, R.H., Van Goor, H. and Bouma, H.R. (2022) Plasma Free Thiol Levels during Early Sepsis Predict Future Renal Function Decline. Antioxidants, 11, Article 800. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Kőszegi, T., Horváth-Szalai, Z., Ragán, D., Kósa, B., Szirmay, B., Kurdi, C., Kovács, G.L. and Mühl, D. (2023) Measurement of Urinary Gc-Globulin by a Fluorescence ELISA Technique: Method Validation and Clinical Evaluation in Septic Patients—A Pilot Study. Molecules, 28, Article 6864. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Aomatsu, A., Kaneko, S., Yanai, K., Ishii, H., Ito, K., Hirai, K., Ookawara, S., Kobayashi, Y., Sanui, M. and Morishita, Y. (2022) MicroRNA Expression Profiling in Acute Kidney Injury. Translational Research, 244, 1-31. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Glinge, C., Clauss, S., Boddum, K., Jabbari, R., Jabbari, J., Risgaard, B., Tomsits, P., Hildebrand, B., Kääb, S., Wakili, R., Jespersen, T. and Tfelt-Hansen, J. (2017) Stability of Circulating Blood-Based MicroRNAs—Pre-Analytic Methodological Considerations. PLOS ONE, 12, e0167969. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Guo, C., Dong, G., Liang, X. and Dong, Z. (2019) Epigenetic Regulation in AKI and Kidney Repair: Mechanisms and Therapeutic Implications. Nature Reviews Nephrology, 15, 220-239. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Liu, Z., Yang, D., Gao, J., Xiang, X., Hu, X., Li, S., Wu, W., Cai, J., Tang, C., Zhang, D. and Dong, Z. (2020) Discovery and Validation of miR-452 as an Effective Biomarker for Acute Kidney Injury in Sepsis. Theranostics, 10, 11963-11975. [Google Scholar] [CrossRef] [PubMed]
|