|
[1]
|
De Oliveira Scott, S.S., Pedroso, J.L., Barsottini, O.G.P., et al. (2020) Natural History and Epidemiology of the Spinocerebellar Ataxias: Insights from the First Description to Nowadays. Journal of the Neurological Sciences, 417, Article 117082. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Rossini, P.M., Burke, D., Chen, R., et al. (2015) Non-Invasive Electrical and Magnetic Stimulation of the Brain, Spinal Cord, Roots and Peripheral Nerves: Basic Principles and Procedures for Routine Clinical and Research Application. An Updated Report from an I.F.C.N. Committee. Clinical Neurophysiology, 126, 1071-1107. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Epstein, C.M., Wassermann, E.M. and Ziemann, U. (2011) The Oxford Handbook of Transcranial Stimulation. Oxford University Press, Oxford. [Google Scholar] [CrossRef]
|
|
[4]
|
Lefaucheur, J.-P., Aleman, A., Baeken, C., et al. (2020) Evidence-Based Guidelines on the Therapeutic Use of Repetitive Transcranial Magnetic Stimulation (rTMS): An Update (2014-2018). Clinical Neurophysiology, 131, 474-528. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Rossini, P.M. and Caramia, M.D. (1992) Central Conduction Studies and Magnetic Stimulation. Current Opinion in Neurology and Neurosurgery, 5, 697-703.
|
|
[6]
|
Barbier, M., Bahlo, M., Pennisi, A., et al. (2022) Heterozygous PNPT1 Variants Cause Spinocerebellar Ataxia Type 25. Annals of Neurology, 92, 122-137. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Sullivan, R., Yau, W.Y., O’Connor, E. and Houlden, H. (2019) Spinocerebellar Ataxia: An Update. Journal of Neurology, 266, 533-544. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Kass, R.S. (2005) The Channelopathies: Novel Insights into Molecular and Genetic Mechanisms of Human Disease. The Journal of Clinical Investigation, 115, 1986-1989. [Google Scholar] [CrossRef]
|
|
[9]
|
Binda, F., Pernaci, C. and Saxena, S. (2020) Cerebellar Development and Circuit Maturation: A Common Framework for Spinocerebellar Ataxias. Frontiers in Neuroscience, 14, Article 293. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Coutelier, M., Coarelli, G., Monin, M.L., et al. (2017) A Panel Study on Patients with Dominant Cerebellar Ataxia Highlights the Frequency of Channelopathies. Brain, 140, 1579-1594. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Klockgether, T., Mariotti, C. and Paulson, H.L. (2019) Spinocerebellar Ataxia. Nature Reviews Disease Primers, 5, Article No. 24. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Zhang, N. and Ashizawa, T. (2017) RNA Toxicity and Foci Formation in Microsatellite Expansion Diseases. Current Opinion in Genetics & Development, 44, 17-29. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Daughters, R.S., Tuttle, D.L., Gao, W., et al. (2009) RNA Gain-of-Function in Spinocerebellar Ataxia Type 8. PLOS GENETICS, 5, e1000600. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Jones, L., Houlden, H. and Tabrizi, S.J. (2017) DNA Repair in the Trinucleotide Repeat Disorders. The Lancet Neurology, 16, 88-96. [Google Scholar] [CrossRef]
|
|
[15]
|
Chen, Z., Sequeiros, J., Tang, B., et al. (2018) Genetic Modifiers of Age-at-Onset in Polyglutamine Diseases. Ageing Research Reviews, 48, 99-108. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Magee, J.C. and Grienberger, C. (2020) Synaptic Plasticity Forms and Functions. Annual Review of Neuroscience, 43, 95-117. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Ma, Q., Geng, Y., Wang, H.L., et al. (2019) High Frequency Repetitive Transcranial Magnetic Stimulation Alleviates Cognitive Impairment and Modulates Hippocampal Synaptic Structural Plasticity in Aged Mice. Frontiers in Aging Neuroscience, 11, Article 235. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Shohayeb, B., Diab, M., Ahmed, M., et al. (2018) Factors that Influence Adult Neurogenesis as Potential Therapy. Translational Neurodegeneration, 7, Article NO. 4. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Baeken, C., De Raedt, R., Bossuyt, A., et al. (2011) The Impact of HF-rTMS Treatment on Serotonin2A Receptors in Unipolar Melancholic Depression. Brain Stimulation, 4, 104-111. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Wang, D.J., Su, L.D., Wang, Y.N., et al. (2014) Long-Term Potentiation at Cerebellar Parallel Fiber-Purkinje Cell Synapses Requires Presynaptic and Postsynaptic Signaling Cascades. The Journal of Neuroscience, 34, 2355-2364. [Google Scholar] [CrossRef]
|
|
[21]
|
Hirano, T. (2013) Long-Term Depression and Other Synaptic Plasticity in the Cerebellum. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, 89, 183-195. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Zhai, B., Fu, J., Xiang, S., et al. (2020) Repetitive Transcranial Magnetic Stimulation Ameliorates Recognition Memory Impairment Induced by Hindlimb Unloading in Mice Associated with BDNF/TrkB Signaling. Neuroscience Research, 153, 40-47. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Li, C.-T., Huang, Y.-Z., Bai, Y.-M., et al. (2019) Critical Role of Glutamatergic and GABAergic Neurotransmission in the Central Mechanisms of Theta-Burst Stimulation. Human Brain Mapping, 40, 2001-2009. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Choung, J.S., Kim, J.M., Ko, M.H., et al. (2021) Therapeutic Efficacy of Repetitive Transcranial Magnetic Stimulation in an Animal Model of Alzheimer’s Disease. Scientific Reports, 11, Article No. 437. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Chen, X., Dong, G.-Y. and Wang, L.-X. (2020) High-Frequency Transcranial Magnetic Stimulation Protects APP/PS1 Mice against Alzheimer’s Disease Progress by Reducing APOE and Enhancing Autophagy. Brain and Behavior, 10, e01740. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Li, K., Wang, X., Jiang, Y., et al. (2021) Early Intervention Attenuates Synaptic Plasticity Impairment and Neuroinflammation in 5xFAD Mice. Journal of Psychiatric Research, 136, 204-216. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Murase, N., Duque, J., Mazzocchio, R. and Cohen, L.G. (2004) Influence of Interhemispheric Interactions on Motor Function in Chronic Stroke. Annals of Neurology, 55, 400-409. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Dafotakis, M., Grefkes, C., Eickhoff, S.B., et al. (2008) Effects of RTMS on Grip Force Control Following Subcortical Stroke. Experimental Neurology, 211, 407-412. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Niimi, M., Hashimoto, K., Kakuda, W., et al. (2016) Role of Brain-Derived Neurotrophic Factor in Beneficial Effects of Repetitive Transcranial Magnetic Stimulation for Upper Limb Hemiparesis after Stroke. PLOS ONE, 11, e0152241. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Bai, G., Jiang, L., Huan, S., et al. (2022) Study on Low-Frequency Repetitive Transcranial Magnetic Stimulation Improves Speech Function and Mechanism in Patients with Non-Fluent Aphasia after Stroke. Frontiers in Aging Neuroscience, 14, Article 883542. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Pascual-Leone, A., Valls-Sole, J., Brasil-Neto, J.P., et al. (1994) Akinesia in Parkinson’s Disease. II. Effects of Subthreshold Repetitive Transcranial Motor Cortex Stimulation. Neurology, 44, 892-898. [Google Scholar] [CrossRef]
|
|
[32]
|
Gaynor, L.M.F.D., Kühn, A.A., Dileone, M., et al. (2008) Suppression of Beta Oscillations in the Subthalamic Nucleus Following Cortical Stimulation in Humans. The European Journal of Neuroscience, 28, 1686-1695. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Udupa, K., Bahl, N., Ni, Z., et al. (2016) Cortical Plasticity Induction by Pairing Subthalamic Nucleus Deep-Brain Stimulation and Primary Motor Cortical Transcranial Magnetic Stimulation in Parkinson’s Disease. The Journal of Neuroscience, 36, 396-404. [Google Scholar] [CrossRef]
|
|
[34]
|
George, M.S., Lisanby, S.H., Avery, D., et al. (2010) Daily Left Prefrontal Transcranial Magnetic Stimulation Therapy for Major Depressive Disorder: A Sham-Controlled Randomized Trial. Archives of General Psychiatry, 67, 507-516. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Pal, E., Nagy, F., Aschermann, Z., et al. (2010) The Impact of Left Prefrontal Repetitive Transcranial Magnetic Stimulation on Depression in Parkinson’s Disease: A Randomized, Double-Blind, Placebo-Controlled Study. Movement Disorders, 25, 2311-2317. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Lisanby, S.H. and Belmaker, R.H. (2000) Animal Models of the Mechanisms of Action of Repetitive Transcranial Magnetic Stimulation (RTMS): Comparisons with Electroconvulsive Shock (ECS). Depression and Anxiety, 12, 178-187. [Google Scholar] [CrossRef]
|
|
[37]
|
Dennis, C.-L., Ross, L.E. and Herxheimer, A. (2008) Oestrogens and Progestins for Preventing and Treating Postpartum Depression. Cochrane Database of Systematic Reviews, No. 4, Article No. CD001690. [Google Scholar] [CrossRef]
|
|
[38]
|
Rivas-Grajales, A.M., Barbour, T., Camprodon, J.A., et al. (2023) The Impact of Sex Hormones on Transcranial Magnetic Stimulation Measures of Cortical Excitability: A Systematic Review and Considerations for Clinical Practice. Harvard Review of Psychiatry, 31, 114-123. [Google Scholar] [CrossRef]
|
|
[39]
|
Boggio, P.S., Rocha, M., Oliveira, M.O., et al. (2010) Noninvasive Brain Stimulation with High-Frequency and Low-Intensity Repetitive Transcranial Magnetic Stimulation Treatment for Posttraumatic Stress Disorder. The Journal of Clinical Psychiatry, 71, 992-999. [Google Scholar] [CrossRef]
|
|
[40]
|
Leong, K., Chan, P., Ong, L., et al. (2020) A Randomized Sham-Controlled Trial of 1-Hz and 10-Hz Repetitive Transcranial Magnetic Stimulation (RTMS) of the Right Dorsolateral Prefrontal Cortex in Civilian Post-Traumatic Stress Disorder: Un essai randomisé contrôlé simulé de stimulation magnétique transcrânienne repetitive (SMTr) de 1 Hz et 10 Hz du cortex préfrontal dorsolatéral droit dans le trouble de stress post-traumatique chez des civils. Canadian Journal of Psychiatry, 65, 770-778. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Hausmann, M., Tegenthoff, M., Sänger, J., et al. (2006) Transcallosal Inhibition across the Menstrual Cycle: A TMS Study. Clinical Neurophysiology, 117, 26-32. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Wang, H.N., Bai, Y.H., Chen, Y.C., et al. (2015) Repetitive Transcranial Magnetic Stimulation Ameliorates Anxiety-Like Behavior and Impaired Sensorimotor Gating in a Rat Model of Post-Traumatic Stress Disorder. PLOS ONE, 10, e0117189. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Otani, V.H.O., Shiozawa, P., Cordeiro, Q., et al. (2015) A Systematic Review and Meta-Analysis of the Use of Repetitive Transcranial Magnetic Stimulation for Auditory Hallucinations Treatment in Refractory Schizophrenic Patients. International Journal of Psychiatry in Clinical Practice, 19, 228-232. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Massimini, M., Ferrarelli, F., Esser, S.K., et al. (2007) Triggering Sleep Slow Waves by Transcranial Magnetic Stimulation. Proceedings of the National Academy of Sciences of the United States of America, 104, 8496-8501. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Shiga, Y., Tsuda, T., Itoyama, Y., et al. (2002) Transcranial Magnetic Stimulation Alleviates Truncal Ataxia in Spinocerebellar Degeneration. Journal of Neurology, Neurosurgery, and Psychiatry, 72, 124-126. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Ihara, Y., Takata, H., Tanabe, Y., et al. (2005) Influence of Repetitive Transcranial Magnetic Stimulation on Disease Severity and Oxidative Stress Markers in the Cerebrospinal Fluid of Patients with Spinocerebellar Degeneration. Neurological Research, 27, 310-313. [Google Scholar] [CrossRef]
|
|
[47]
|
Groiss, S.J. and Ugawa, Y. (2012) Cerebellar Stimulation in Ataxia. The Cerebellum, 11, 440-442. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Chen, X.Y., Lian, Y.H., Liu, X.H., et al. (2022) Effects of Repetitive Transcranial Magnetic Stimulation on Cerebellar Metabolism in Patients with Spinocerebellar Ataxia Type 3. Frontiers in Aging Neuroscience, 14, Article 827993. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Kawamura, K., Etoh, S. and Shimodozono, M. (2018) Transcranial Magnetic Stimulation for Diplopia in a Patient with Spinocerebellar Ataxia Type 6: A Case Report. Cerebellum & Ataxias, 5, Article No. 15. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Qiu, M., Chen, Y., Li, D., et al. (2022) Repetitive Transcranial Magnetic Stimulation in Spinocerebellar Ataxia Type 2: A Case Report. The Journal of ECT, 38, e26-e28. [Google Scholar] [CrossRef]
|
|
[51]
|
Martin, J.-J. (2012) Spinocerebellar Ataxia Type 7. In: Vinken, P. and Bruyn, G., Eds., Handbook of Clinical Neurology, Vol. 103, Elsevier, Amsterdam, 475-491. [Google Scholar] [CrossRef]
|
|
[52]
|
Toyoshima, Y. and Takahashi, H. (2018) Spinocerebellar Ataxia Type 17 (SCA17). In: Nóbrega, C. and Pereira de Almeida, L., Eds., Polyglutamine Disorders. Advances in Experimental Medicine and Biology, Vol. 1049, Springer, Cham, 219-231. [Google Scholar] [CrossRef] [PubMed]
|