| [1] | Jin, H., Qian, Y., Dai, Y., et al. (2016) Magnetic Enrichment of Dendritic Cell Vaccine in Lymph Node with Fluorescent-Magnetic Nanoparticles Enhanced Cancer Immunotherapy. Theranostics, 6, 2000-2014. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [2] | Fan, C.-H., Cheng, Y.-H., Ting, C.-Y., et al. (2016) Ultrasound/Magnetic Targeting with SPIO-DOX-Microbubble Complex for Image-Guided Drug Delivery in Brain Tumors. Theranostics, 6, 1542-1556. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [3] | Chandrasekharan, P., Tay, Z.W., Hensley, D., et al. (2020) Using Magnetic Particle Imaging Systems to Localize and Guide Magnetic Hyperthermia Treatment: Tracers, Hardware, and Future Medical Applications. Theranostics, 10, 2965-2981. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [4] | Li, S., Shang, L., Xu, B., et al. (2019) A Nanozyme with Photo-Enhanced Dual Enzyme-Like Activities for Deep Pancreatic Cancer Therapy. Angewandte Chemie International Edition, 58, 12624-12631. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [5] | Curcio, A., Silva, A.K.A., Cabana, S., et al. (2019) Iron Oxide Nanoflowers @ CuS Hybrids for Cancer Tri-Therapy: Interplay of Photothermal Therapy, Magnetic Hyperthermia and Photodynamic Therapy. Theranostics, 9, 1288-1302. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [6] | Mukherjee, S., Sonanini, D., Maurer, A., et al. (2019) The Yin and Yang of Imaging Tumor Associated Macrophages with PET and MRI. Theranostics, 9, 7730-7748. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [7] | Karimian-Jazi, K., Münch, P., Alexander, A., et al. (2020) Monitoring Innate Immune Cell Dynamics in the Glioma Microenvironment by Magnetic Resonance Imaging and Multiphoton Microscopy (MR-MPM). Theranostics, 10, 1873-1883. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [8] | Reddy, L.H., Arias, J.L., Nicolas, J., et al. (2012) Magnetic Nanoparticles: Design and Characterization, Toxicity and Biocompatibility, Pharmaceutical and Biomedical Applications. Chemical Reviews, 112, 5818-5878. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [9] | Shen, L., Li, B. and Qiao, Y. (2018) Fe3O4 Nanoparticles in Targeted Drug/Gene Delivery Systems. Materials, 11, Article 324. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [10] | Han, C., Zhao, D., Deng, C., et al. (2012) A Facile Hydrothermal Synthesis of Porous Magnetite Microspheres. Materials Letters, 70, 70-72. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [11] | Roca, A.G., Morales, M.P., O’Grady, K., et al. (2006) Structural and Magnetic Properties of Uniform Magnetite Nanoparticles Prepared by High Temperature Decomposition of Organic Precursors. Nanotechnology, 17, 2783-2788. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [12] | Gu, T., Zhang, Y., Khan, S.A., et al. (2019) Continuous Flow Synthesis of Superparamagnetic Nanoparticles in Reverse Miniemulsion Systems. Colloid and Interface Science Communications, 28, 1-4. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [13] | Bao, Y., Sherwood, J.A. and Sun, Z. (2018) Magnetic Iron Oxide Nanoparticles as T1 Contrast Agents for Magnetic Resonance Imaging. Journal of Materials Chemistry C, 6, 1280-1290. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [14] | Grillo, R., Rosa, A.H. and Fraceto, L.F. (2015) Engineered Nanoparticles and Organic Matter: A Review of the State-of-the-Art. Chemosphere, 119, 608-619. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [15] | Wang, X., Tu, Q., Zhao, B., et al. (2013) Effects of Poly(L-Lysine)-Modified Fe3O4 Nanoparticles on Endogenous Reactive Oxygen Species in Cancer Stem Cells. Biomaterials, 34, 1155-1169. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [16] | Wang, C., Wang, Y., Xiao, W., et al. (2023) Carboxylated Superparamagnetic Fe3O4 Nanoparticles Modified with 3-Amino Propanol and Their Application in Magnetic Resonance Tumor Imaging. BMC Cancer, 23, Article No. 54. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [17] | Zhang, Y., Ning, R., Wang, W., et al. (2022) Synthesis of Fe3O4/PDA Nanocomposites for Osteosarcoma Magnetic Resonance Imaging and Photothermal Therapy. Frontiers in Bioengineering and Biotechnology, 10, Article 844540. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [18] | Xu, S., Yang, F., Zhou, X., et al. (2015) Uniform PEGylated PLGA Microcapsules with Embedded Fe3O4 Nanoparticles for US/MR Dual-Modality Imaging. ACS Applied Materials & Interfaces, 7, 20460-20468. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [19] | Illés, E., Tombácz, E., Szekeres, M., et al. (2015) Novel Carboxylated PEG-Coating on Magnetite Nanoparticles Designed for Biomedical Applications. Journal of Magnetism and Magnetic Materials, 380, 132-139. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [20] | Bilal, M., Iqbal, H.M.N., Adil, S.F., et al. (2022) Surface-Coated Magnetic Nanostructured Materials for Robust Bio-Catalysis and Biomedical Applications—A Review. Journal of Advanced Research, 38, 157-177. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [21] | Li, J., Hu, Y., Yang, J., et al. (2015) Hyaluronic Acid-Modified Fe3O4@Au Core/Shell Nanostars for Multimodal Imaging and Photothermal Therapy of Tumors. Biomaterials, 38, 10-21. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [22] | Neamtu, M., Nadejde, C., Hodoroaba, V.-D., et al. (2018) Functionalized Magnetic Nanoparticles: Synthesis, Characterization, Catalytic Application and Assessment of Toxicity. Scientific Reports, 8, Article No. 6278. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [23] | Kim, J., Kim, H.S., Lee, N., et al. (2008) Multifunctional Uniform Nanoparticles Composed of a Magnetite Nanocrystal Core and a Mesoporous Silica Shell for Magnetic Resonance and Fluorescence Imaging and for Drug Delivery. Angewandte Chemie International Edition, 47, 8438-8441. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [24] | Lin, J., Xin, P., An, L., et al. (2019) Fe3O4-ZIF-8 Assemblies as PH and Glutathione Responsive T2-T1 Switching Magnetic Resonance Imaging Contrast Agent for Sensitive Tumor Imaging in vivo. Chemical Communications, 55, 478-481. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [25] | Thanuja, M.Y., Anupama, C. and Ranganath, S.H. (2018) Bioengineered Cellular and Cell Membrane-Derived Vehicles for Actively Targeted Drug Delivery: So Near and Yet So Far. Advanced Drug Delivery Reviews, 132, 57-80. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [26] | Hu, C.-M.J., Zhang, L., Aryal, S., et al. (2011) Erythrocyte Membrane-Camouflaged Polymeric Nanoparticles as a Biomimetic Delivery Platform. Proceedings of the National Academy of Sciences, 108, 10980-10985. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [27] | Yao, C., Wang, W., Wang, P., et al. (2018) Near-Infrared Upconversion Mesoporous Cerium Oxide Hollow Biophotocatalyst for Concurrent PH-/H2O2-Responsive O2-Evolving Synergetic Cancer Therapy. Advanced Materials, 30, Article ID: 1704833. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [28] | Rao, L., Bu, L.-L., Meng, Q.-F., et al. (2017) Antitumor Platelet-Mimicking Magnetic Nanoparticles. Advanced Functional Materials, 27, Article ID: 1604774. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [29] | Huang, J., Wang, L., Lin, R., et al. (2013) Casein-Coated Iron Oxide Nanoparticles for High MRI Contrast Enhancement and Efficient Cell Targeting. ACS Applied Materials & Interfaces, 5, 4632-4639. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [30] | Zhang, Y.N., Liu, L., Li, W., et al. (2023) PDGFB-Targeted Functional MRI Nanoswitch for Activatable T1-T2 Dual-Modal Ultra-Sensitive Diagnosis of Cancer. Journal of Nanobiotechnology, 21, Article No. 9. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [31] | Leal, M.P., Rivera-Fernández, S., Franco, J.M., et al. (2015) Long-Circulating PEGylated Manganese Ferrite Nanoparticles for MRI-Based Molecular Imaging. Nanoscale, 7, 2050-2059. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [32] | Lee, N. and Hyeon, T. (2012) Designed Synthesis of Uniformly Sized Iron Oxide Nanoparticles for Efficient Magnetic Resonance Imaging Contrast Agents. Chemical Society Reviews, 41, 2575-2589. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [33] | Ma, D., Chen, J., Luo, Y., et al. (2017) Zwitterion-Coated Ultrasmall Iron Oxide Nanoparticles for Enhanced T1-Weighted Magnetic Resonance Imaging Applications. Journal of Materials Chemistry B, 5, 7267-7273. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [34] | Zhao, S., Yu, X., Qian, Y., et al. (2020) Multifunctional Magnetic Iron Oxide Nanoparticles: An Advanced Platform for Cancer Theranostics. Theranostics, 10, 6278-6309. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [35] | Kim, B.H., Lee, N., Kim, H., et al. (2011) Large-Scale Synthesis of Uniform and Extremely Small-Sized Iron Oxide Nanoparticles for High-Resolution T1 Magnetic Resonance Imaging Contrast Agents. Journal of the American Chemical Society, 133, 12624-12631. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [36] | Lu, Y., Xu, Y.-J., Zhang, G.-B., et al. (2017) Iron Oxide Nanoclusters for T1 Magnetic Resonance Imaging of Non-Human Primates. Nature Biomedical Engineering, 1, 637-643. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [37] | Sherwood, J., Rich, M., Lovas, K., et al. (2017) T1-Enhanced MRI-Visible Nanoclusters for Imaging-Guided Drug Delivery. Nanoscale, 9, 11785-11792. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [38] | Stratton, M.R., Campbell, P.J. and Futreal, P.A. (2009) The Cancer Genome. Nature, 458, 719-724. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [39] | Green, E.D., Guyer, M.S., Green, E.D., et al. (2011) Charting a Course for Genomic Medicine from Base Pairs to Bedside. Nature, 470, 204-213. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [40] | Zhu, X., Li, J., Peng, P., et al. (2019) Quantitative Drug Release Monitoring in Tumors of Living Subjects by Magnetic Particle Imaging Nanocomposite. Nano Letters, 19, 6725-6733. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [41] | Wang, C., Wen, H., Guo, H., et al. (2020) A Novel High Doxorubicin-Loaded Fe3O4@Void@ZnO Nanocomposite: PH-Controlled Drug Release and Targeted Antitumor Activity. Journal of Materials Science, 55, 16718-16729. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [42] | Fang, R.H., Kroll, A.V., Gao, W., et al. (2018) Cell Membrane Coating Nanotechnology. Advanced Materials, 30, Article Id: 1706759. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [43] | Kumar, C.S.S.R. and Mohammad, F. (2011) Magnetic Nanomaterials for Hyperthermia-Based Therapy and Controlled Drug Delivery. Advanced Drug Delivery Reviews, 63, 789-808. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [44] | Haemmerich, D. and Laeseke, P.F. (2005) Thermal Tumour Ablation: Devices, Clinical Applications and Future Directions. International Journal of Hyperthermia, 21, 755-760. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [45] | Chu, K.F. and Dupuy, D.E. (2014) Thermal Ablation of Tumours: Biological Mechanisms and Advances in Therapy. Nature Reviews Cancer, 14, 199-208. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [46] | Krawczyk, P.M., Eppink, B., Essers, J., et al. (2011) Mild Hyperthermia Inhibits Homologous Recombination, Induces BRCA2 Degradation, and Sensitizes Cancer Cells to Poly (ADP-Ribose) Polymerase-1 Inhibition. Proceedings of the National Academy of Sciences, 108, 9851-9856. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [47] | Liu, X., Zhang, Y., Wang, Y., et al. (2020) Comprehensive Understanding of Magnetic Hyperthermia for Improving Antitumor Therapeutic Efficacy. Theranostics, 10, 3793-3815. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [48] | Yang, Y., Liu, X., Lv, Y., et al. (2014) Orientation Mediated Enhancement on Magnetic Hyperthermia of Fe3O4 Nanodisc. Advanced Functional Materials, 25, 812-820. [Google Scholar] [CrossRef] | 
                     
                                
                                    
                                        | [49] | Hayashi, K., Nakamura, M., Sakamoto, W., et al. (2013) Superparamagnetic Nanoparticle Clusters for Cancer Theranostics Combining Magnetic Resonance Imaging and Hyperthermia Treatment. Theranostics, 3, 366-376. [Google Scholar] [CrossRef] [PubMed] |