|
[1]
|
Masi, S., Pugliese, N.R. and Taddei, S. (2019) The Difficult Relationship between Uric Acid and Cardiovascular Disease. European Heart Journal, 40, 3055-3057. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Maiuolo, J., Oppedisano, F., Gratteri, S., et al. (2016) Regulation of Uric Acid Metabolism and Excretion. International Journal of Cardiology, 213, 8-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Richette, P. and Bardin, T. (2010) Gout. The Lancet, 375, 318-328. [Google Scholar] [CrossRef]
|
|
[4]
|
Zhou, X., Matavelli, L. and Frohlich, E.D. (2006) Uric Acid: Its Relationship to Renal Hemodynamics and the Renal Renin-Angiotensin System. Current Hypertension Reports, 8, 120-124. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Liu, R., Han, C., Wu, D., et al. (2015) Prevalence of Hyperuricemia and Gout in Mainland China from 2000 to 2014: A Systematic Review and Meta-Analysis. BioMed Research International, 2015, Article ID: 762820. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Baldwin, W., Mcrae, S., Marek, G., et al. (2011) Hyperuricemia as a Mediator of the Proinflammatory Endocrine Imbalance in the Adipose Tissue in a Murine Model of the Metabolic Syndrome. Diabetes, 60, 1258-1269. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Pascual, E. (1991) Persistence of Monosodium Urate Crystals and Low-Grade Inflammation in the Synovial-Fluid of Patients with Untreated Gout. Arthritis & Rheumatism, 34, 141-145. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Casiglia, E., Tikhonoff, V., Virdis, A., et al. (2020) Serum Uric Acid and Fatal Myocardial Infarction: Detection of Prognostic Cut-Off Values: The URRAH (Uric Acid Right for Heart Health) Study. Journal of Hypertension, 38, 412-419. [Google Scholar] [CrossRef]
|
|
[9]
|
Maharani, N., Kuwabara, M. and Hisatome, I. (2016) Hyperuricemia and Atrial Fibrillation. International Heart Journal, 57, 395-399. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Erbel, R., Aboyans, V., Boileau, C., et al. (2014) 2014 ESC Guidelines on the Diagnosis and Treatment of Aortic Diseases: Document Covering Acute and Chronic Aortic Diseases of the Thoracic and Abdominal Aorta of the Adult the Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC). European Heart Journal, 35, 2873-2893. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Johnston, K.W., Rutherford, R.B., Tilson, M.D., et al. (1991) Suggested Standards for Reporting on Arterial Aneurysms. Journal of Vascular Surgery, 13, 452-458. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Lu, H.C., Du, W., Ren, L., et al. (2021) Vascular Smooth Muscle Cells in Aortic Aneurysm: From Genetics to Mechanisms. Journal of the American Heart Association, 10, e023601. [Google Scholar] [CrossRef]
|
|
[13]
|
Sampson, U.K., Norman, P.E., Fowkes, F.G., et al. (2014) Global and Regional Burden of Aortic Dissection and Aneurysms: Mortality Trends in 21 World Regions, 1990 to 2010. Global Heart, 9, 171-180. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Wang, J.-C., Tsai, S.-H., Tsai, H.-Y., et al. (2023) Hyperuricemia Exacerbates Abdominal Aortic Aneurysm Formation through the URAT1/ERK/MMP-9 Signaling Pathway. BMC Cardiovascular Disorders, 23, Article No. 55. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Otaki, Y., Watanabe, T., Konta, T., et al. (2020) Impact of Hyperuricemia on Mortality Related to Aortic Diseases: A 3.8-Year Nationwide Community-Based Cohort Study. Scientific Reports, 10, Article No. 14281. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Yang, L., Wu, H., Luo, C.C., et al. (2023) Urate-Lowering Therapy Inhibits Thoracic Aortic Aneurysm and Dissection Formation in Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 43, e172-e189. [Google Scholar] [CrossRef]
|
|
[17]
|
Esen, A.M., Akcakoyun, M., Esen, O., et al. (2011) Uric Acid as a Marker of Oxidative Stress in Dilatation of the Ascending Aorta. American Journal of Hypertension, 24, 149-154. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Gill, D., Cameron, A.C., Burgess, S., et al. (2021) Urate, Blood Pressure, and Cardiovascular Disease. Evidence from Mendelian Randomization and Meta-Analysis of Clinical Trials. Hypertension, 77, 383-392. [Google Scholar] [CrossRef]
|
|
[19]
|
Ruggiero, C., Cherubini, A., Ble, A., et al. (2006) Uric Acid and Inflammatory Markers. European Heart Journal, 27, 1174-1181. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Oğuz, N., Kırça, M., Çetin, A., et al. (2017) Effect of Uric Acid on Inflammatory COX-2 and ROS Pathways in Vascular Smooth Muscle Cells. Journal of Receptor and Signal Transduction Research, 37, 500-505. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Vlachopoulos, C., Xaplanteris, P., Vyssoulis, G., et al. (2011) Association of Serum Uric Acid Level with Aortic Stiffness and Arterial Wave Reflections in Newly Diagnosed, Never-Treated Hypertension. American Journal of Hypertension, 24, 33-39. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Shah, P.K. (1997) Inflammation, Metalloproteinases, and Increased Proteolysis: An Emerging Pathophysiological Paradigm in Aortic Aneurysm. Circulation, 96, 2115-2117. [Google Scholar] [CrossRef]
|
|
[23]
|
Corry, D.B., Eslami, P., Yamamoto, K., et al. (2008) Uric Acid Stimulates Vascular Smooth Muscle Cell Proliferation and Oxidative Stress via the Vascular Renin-Angiotensin System. Journal of Hypertension, 26, 269-275. [Google Scholar] [CrossRef]
|
|
[24]
|
Chen, X., Li, Y., Sheng, C.-S., et al. (2010) Association of Serum Uric Acid with Aortic Stiffness and Pressure in a Chinese Workplace Setting. American Journal of Hypertension, 23, 387-392. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Ali, N., Rahman, S., Islam, S., et al. (2019) The Relationship between Serum Uric Acid and Lipid Profile in Bangladeshi Adults. BMC Cardiovascular Disorders, 19, Article No. 42. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Wang, X., Zhong, S. and Guo, X. (2022) The Associations between Fasting Glucose, Lipids and Uric Acid Levels Strengthen with the Decile of Uric Acid Increase and Differ by Sex. NMCD: Nutrition, Metabolism, and Cardiovascular Diseases, 32, 2786-2793. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Förstermann, U. (2008) Oxidative Stress in Vascular Disease: Causes, Defense Mechanisms and Potential Therapies. Nature Clinical Practice Cardiovascular Medicine, 5, 338-349. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Zeng, T., Shi, L., Ji, Q.W., et al. (2018) Cytokines in Aortic Dissection. Clinica Chimica Acta, 486, 177-182. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Li, Z.Q., Cong, X. and Kong, W. (2022) Matricellular Proteins: Potential Biomarkers and Mechanistic Factors in Aortic Aneurysms. Journal of Molecular and Cellular Cardiology, 169, 41-56. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Hou, Y.F., Guo, W.J., Fan, T.F., et al. (2021) Advanced Research of Abdominal Aortic Aneurysms on Metabolism. Frontiers in Cardiovascular Medicine, 8, Article 630269. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Wang, Q., Yesitayi, G., Liu, B.Y., et al. (2023) Targeting Metabolism in Aortic Aneurysm and Dissection: From Basic Research to Clinical Applications. International Journal of Biological Sciences, 19, 3869-3891. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Le, M.T.Q., Jamrozik, K., Davis, T.M.E., et al. (2007) Negative Association between Infra-Renal Aortic Diameter and Glycaemia: The Health in Men Study. European Journal of Vascular and Endovascular Surgery, 33, 599-604. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Kristensen, K.L., Dahl, M., Rasmussen, L.M., et al. (2017) Glycated Hemoglobin Is Associated with the Growth Rate of Abdominal Aortic Aneurysms: A Substudy from the VIVA (Viborg Vascular) Randomized Screening Trial. Arteriosclerosis, Thrombosis, and Vascular Biology, 37, 730-736. [Google Scholar] [CrossRef]
|
|
[34]
|
Zhou, Y., Wang, T., Fan, H., et al. (2024) Research Progress on the Pathogenesis of Aortic Aneurysm and Dissection in Metabolism. Current Problems in Cardiology, 49, Article 102040. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Longo, G.M., Xiong, W., Greiner, T.C., et al. (2002) Matrix Metalloproteinases 2 and 9 Work in Concert to Produce Aortic Aneurysms. The Journal of Clinical Investigation, 110, 625-632.
|
|
[36]
|
Yoshimura, K., Aoki, H., Ikeda, Y., et al. (2005) Regression of Abdominal Aortic Aneurysm by Inhibition of c-Jun N-Terminal Kinase. Nature Medicine, 11, 1330-1338. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Zhou, L., Li, C., Gao, L., et al. (2015) High-Density Lipoprotein Synthesis and Metabolism (Review). Molecular Medicine Reports, 12, 4015-4021. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Glass, C., Pittman, R.C., Weinstein, D.B., et al. (1983) Dissociation of Tissue Uptake of Cholesterol Ester from that of Apoprotein A-I of Rat Plasma High Density Lipoprotein: Selective Delivery of Cholesterol Ester to Liver, Adrenal, and Gonad. Proceedings of the National Academy of Sciences of the United States of America, 80, 5435-5439. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Laughter, M.R., Maymone, M.B.C., Karimkhani, C., et al. (2020) The Burden of Skin and Subcutaneous Diseases in the United States from 1990 to 2017. JAMA Dermatology, 156, 874-881. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Gordon, D.J. and Rifkind, B.M. (1989) High-Density Lipoprotein—The Clinical Implications of Recent Studies. The New England Journal of Medicine, 321, 1311-1316. [Google Scholar] [CrossRef]
|
|
[41]
|
Castelli, W.P., Garrison, R.J., Wilson, P.W., et al. (1986) Incidence of Coronary Heart Disease and Lipoprotein Cholesterol Levels. The Framingham Study. JAMA, 256, 2835-2838. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Kontush, A. and Chapman, M.J. (2006) Functionally Defective High-Density Lipoprotein: A New Therapeutic Target at the Crossroads of Dyslipidemia, Inflammation, and Atherosclerosis. Pharmacological Reviews, 58, 342-374. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Tabet, F. and Rye, K.-A. (2009) High-Density Lipoproteins, Inflammation and Oxidative Stress. Clinical Science, 116, 87-98. [Google Scholar] [CrossRef]
|
|
[44]
|
El Khoudary, S.R. (2017) HDL and the Menopause. Current Opinion in Lipidology, 28, 328-336. [Google Scholar] [CrossRef]
|
|
[45]
|
Rader, D.J. and Hovingh, G.K. (2014) HDL and Cardiovascular Disease. The Lancet, 384, 618-625. [Google Scholar] [CrossRef]
|
|
[46]
|
Toth, P.P., Barter, P.J., Rosenson, R.S., et al. (2013) High-Density Lipoproteins: A Consensus Statement from the National Lipid Association. Journal of Clinical Lipidology, 7, 484-525. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Ziga, N. and Becic, F. (2013) Allopurinol Effect on Values of Lipid Profile Fractions in Hyperuricemic Patients Diagnosed with Metabolic Syndrome. Materia Socio-Medica, 25, 167-169.
|
|
[48]
|
Peng, T.-C., Wang, C.-C., Kao, T.-W., et al. (2015) Relationship between Hyperuricemia and Lipid Profiles in US Adults. BioMed Research International, 2015, Article ID: 127596. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Soori, H., Rezapoor, P., Najafimehr, H., et al. (2022) Comparative Analysis of Anthropometric Indices with Serum Uric Acid in Iranian Healthy Population. Journal of Clinical Laboratory Analysis, 36, e24246. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Malla, P., Khanal, M.P., Pokhrel, A., et al. (2023) Correlation of Serum Uric Acid and Lipid Profile in Patients with Type 2 Diabetes Mellitus. Journal of Nepal Health Research Council, 21, 170-174.
|
|
[51]
|
Lukkunaprasit, T., Rattanasiri, S., Ongphiphadhanakul, B., et al. (2021) Causal Associations of Urate with Cardiovascular Risk Factors: Two-Sample Mendelian Randomization. Frontiers in Genetics, 12, Article 687279. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Nakagawa, T., Hu, H., Zharikov, S., et al. (2006) A Causal Role for Uric Acid in Fructose-Induced Metabolic Syndrome. American Journal of Physiology-Renal Physiology, 290, F625-F631. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Xie, T. and Leung, P.S. (2017) Fibroblast Growth Factor 21: A Regulator of Metabolic Disease and Health Span. American Journal of Physiology Endocrinology and Metabolism, 313, E292-E302. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Kharitonenkov, A., Wroblewski, V.J., Koester, A., et al. (2007) The Metabolic State of Diabetic Monkeys Is Regulated by Fibroblast Growth Factor-21. Endocrinology, 148, 774-781. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Chen, S., Chen, D., Yang, H., et al. (2020) Uric Acid Induced Hepatocytes Lipid Accumulation through Regulation of miR-149-5p/FGF21 Axis. BMC Gastroenterology, 20, Article No. 39. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Meilhac, O. (2019) High-Density Lipoproteins (HDLs): Biomarkers or Bio-Actors of Abdominal Aortic Aneurysmal Disease? eBioMedicine, 43, 5-6. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Harrison, S.C., Holmes, M.V., Burgess, S., et al. (2018) Genetic Association of Lipids and Lipid Drug Targets with Abdominal Aortic Aneurysm: A Meta-Analysis. JAMA Cardiology, 3, 26-33. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Delbosc, S., Diallo, D., Dejouvencel, T., et al. (2013) Impaired High-Density Lipoprotein Anti-Oxidant Capacity in Human Abdominal Aortic Aneurysm. Cardiovascular Research, 100, 307-315. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Rodriguez-Carrio, J., Lindholt, J.S., Canyelles, M., et al. (2019) IgG Anti-High Density Lipoprotein Antibodies Are Elevated in Abdominal Aortic Aneurysm and Associated with Lipid Profile and Clinical Features. Journal of Clinical Medicine, 9, Article 67. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Ortiz-Muñoz, G., Houard, X., Martin-Ventura, J.L., et al. (2009) HDL Antielastase Activity Prevents Smooth Muscle Cell Anoikis, A Potential New Antiatherogenic Property. The FASEB Journal, 23, 3129-3139. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Martinez-Lopez, D., Camafeita, E., Cedo, L., et al. (2019) APOA1 Oxidation Is Associated to Dysfunctional High-Density Lipoproteins in Human Abdominal Aortic Aneurysm. eBioMedicine, 43, 43-53. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Jia, C., Anderson, J.L.C., Gruppen, E.G., et al. (2021) High-Density Lipoprotein Anti-Inflammatory Capacity and Incident Cardiovascular Events. Circulation, 143, 1935-1945. [Google Scholar] [CrossRef]
|
|
[63]
|
Denimal, D., Monier, S., Bouillet, B., et al. (2023) High-Density Lipoprotein Alterations in Type 2 Diabetes and Obesity. Metabolites, 13, Article 253. [Google Scholar] [CrossRef] [PubMed]
|