|
[1]
|
De Duve, C., Pressman, B.C., Gianetto, R., et al. (1955) Tissue Fractionation Studies. 6. Intracellular Distribution Patterns of Enzymes in Rat-Liver Tissue. Biochemical Journal, 60, 604-617. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Martina, J.A., Raben, N. and Puertollano, R. (2020) SnapShot: Lysosomal Storage Diseases. Cell, 180, 602-602.E1. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Ballabio, A. and Bonifacino, J.S. (2020) Lysosomes as Dynamic Regulators of Cell and Organismal Homeostasis. Nature Reviews Molecular Cell Biology, 21, 101-118. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Chen, F., Kang, R., Liu, J., et al. (2022) The V-ATPases in Cancer and Cell Death. Cancer Gene Therapy, 29, 1529-1541. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Jefferies, K.C., Cipriano, D.J. and Forgac, M. (2008) Function, Structure and Regulation of the Vacuolar (H )-ATPases. Archives of Biochemistry and Biophysics, 476, 33-42. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Chen, R., Jäättelä, M. and Liu, B. (2020) Lysosome as a Central Hub for Rewiring PH Homeostasis in Tumors. Cancers, 12, Article No. 2437. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Ellegaard, A.M., Bach, P. and Jäättelä, M. (2023) Targeting Cancer Lysosomes with Good Old Cationic Amphiphilic Drugs. Reviews of Physiology, Biochemistry and Pharmacology, 185, 107-152. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Webb, B.A., Chimenti, M., Jacobson, M.P., et al. (2011) Dysregulated PH: A Perfect Storm for Cancer Progression. Nature Reviews Cancer, 11, 671-677. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Stransky, L.A. and Forgac, M. (2015) Amino Acid Availability Modulates Vacuolar H -ATPase Assembly. Journal of Biological Chemistry, 290, 27360-27369. [Google Scholar] [CrossRef]
|
|
[10]
|
Liao, Y., Fan, Z., Deng, H., et al. (2018) Zika Virus Liquid Biopsy: A Dendritic Ru(Bpy)(3) (2 )-Polymer-Amplified ECL Diagnosis Strategy Using a Drop of Blood. ACS Central Science, 4, 1403-1411. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Storrie, B. and Desjardins, M. (1996) The Biogenesis of Lysosomes: Is It a Kiss and Run, Continuous Fusion and Fission Process? BioEssays, 18, 895-903. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Palm, W., Park, Y., Wright, K., et al. (2015) The Utilization of Extracellular Proteins as Nutrients Is Suppressed by MTORC1. Cell, 162, 259-270. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Mathew, R., Karantza-Wadsworth, V. and White, E. (2007) Role of Autophagy in Cancer. Nature Reviews Cancer, 7, 961-967. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Kern, U., Wischnewski, V., Biniossek, M.L., et al. (2015) Lysosomal Protein Turnover Contributes to the Acquisition of TGFβ-1 Induced Invasive Properties of Mammary Cancer Cells. Molecular Cancer, 14, Article No. 39. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Fehrenbacher, N., Bastholm, L., Kirkegaard-Sørensen, T., et al. (2008) Sensitization to the Lysosomal Cell Death Pathway by Oncogene-Induced Down-Regulation of Lysosome-Associated Membrane Proteins 1 and 2. Cancer Research, 68, 6623-6633. [Google Scholar] [CrossRef]
|
|
[16]
|
Kim, M.J., Woo, S.J., Yoon, C.H., et al. (2011) Involvement of Autophagy in Oncogenic K-Ras-Induced Malignant Cell Transformation. Journal of Biological Chemistry, 286, 12924-12932. [Google Scholar] [CrossRef]
|
|
[17]
|
Webb, B.A., Cook, J., Wittmann, T., et al. (2020) PHLARE: A Genetically Encoded Ratiometric Lysosome PH Biosensor. [Google Scholar] [CrossRef]
|
|
[18]
|
Fennelly, C. and Amaravadi, R.K. (2017) Lysosomal Biology in Cancer. Methods in Molecular Biology, 1594, 293-308. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Martina, J.A., Diab, H.I., Lishu, L., et al. (2014) The Nutrient-Responsive Transcription Factor TFE3 Promotes Autophagy, Lysosomal Biogenesis, and Clearance of Cellular Debris. Science Signaling, 7, Ra9. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Bouché, V., Espinosa, A.P., Leone, L., et al. (2016) Drosophila Mitf Regulates the V-ATPase and the Lysosomal-Autophagic Pathway. Autophagy, 12, 484-98. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Hemesath, T.J., Steingrimsson, E., Mcgill, G., et al. (1994) Microphthalmia, a Critical Factor in Melanocyte Development, Defines a Discrete Transcription Factor Family. Genes & Development, 8, 2770-2780. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Palmieri, M., Impey, S., Kang, H., et al. (2011) Characterization of the CLEAR Network Reveals an Integrated Control of Cellular Clearance Pathways. Human Molecular Genetics, 20, 3852-3866. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Jefferies, K.C. and Forgac, M. (2008) Subunit H of the Vacuolar (H ) ATPase Inhibits ATP Hydrolysis by the Free V1 Domain by Interaction with the Rotary Subunit F. Journal of Biological Chemistry, 283, 4512-4519. [Google Scholar] [CrossRef]
|
|
[24]
|
Perera, R.M., Stoykova, S., Nicolay, B.N., et al. (2015) Transcriptional Control of Autophagy-Lysosome Function Drives Pancreatic Cancer Metabolism. Nature, 524, 361-365. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Giatromanolaki, A., Sivridis, E., Kalamida, D., et al. (2017) Transcription Factor EB Expression in Early Breast Cancer Relates to Lysosomal/Autophagosomal Markers and Prognosis. Clinical Breast Cancer, 17, E119-E125. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Liang, J., Jia, X., Wang, K., et al. (2018) High Expression of TFEB Is Associated with Aggressive Clinical Features in Colorectal Cancer. OncoTargets and Therapy, 11, 8089-8098. [Google Scholar] [CrossRef]
|
|
[27]
|
Kauffman, E.C., Ricketts, C.J., Rais-Bahrami, S., et al. (2014) Molecular Genetics and Cellular Features of TFE3 and TFEB Fusion Kidney Cancers. Nature Reviews Urology, 11, 465-475. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Zhao, M., Rao, Q., Wu, C., et al. (2015) Alveolar Soft Part Sarcoma of Lung: Report of a Unique Case with Emphasis on Diagnostic Utility of Molecular Genetic Analysis for TFE3 Gene Rearrangement and Immunohistochemistry for TFE3 Antigen Expression. Diagnostic Pathology, 10, Article No. 160. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Garraway, L.A., Widlund, H.R., Rubin, M.A., et al. (2005) Integrative Genomic Analyses Identify MITF as a Lineage Survival Oncogene Amplified in Malignant Melanoma. Nature, 436, 117-122. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Möller, K., Sigurbjornsdottir, S., Arnthorsson, A.O., et al. (2019) MITF Has a Central Role in Regulating Starvation-Induced Autophagy in Melanoma. Scientific Reports, 9, Article No. 1055. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Ohta, T., Arakawa, H., Futagami, F., et al. (1998) Bafilomycin A1 Induces Apoptosis in the Human Pancreatic Cancer Cell Line Capan-1. The Journal of Pathology, 185, 324-330. [Google Scholar] [CrossRef]
|
|
[32]
|
Nakashima, S., Hiraku, Y., Tada-Oikawa, S., et al. (2003) Vacuolar H -ATPase Inhibitor Induces Apoptosis via Lysosomal Dysfunction in the Human Gastric Cancer Cell Line MKN-1. The Journal of Biochemistry, 134, 359-364. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Liu, P., Chen, H., Han, L., et al. (2015) Expression and Role of V1A Subunit of V-ATPases in Gastric Cancer Cells. International Journal of Clinical Oncology, 20, 725-735. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Collins, M.P. and Forgac, M. (2018) Regulation of V-ATPase Assembly in Nutrient Sensing and Function of V-ATPases in Breast Cancer Metastasis. Frontiers in Physiology, 9, Article No. 902. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Hayek, S.R., Rane, H.S. and Parra, K.J. (2019) Reciprocal Regulation of V-ATPase and Glycolytic Pathway Elements in Health and Disease. Frontiers in Physiology, 10, Article No. 127. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Tabke, K., Albertmelcher, A., Vitavska, O., et al. (2014) Reversible Disassembly of the Yeast V-ATPase Revisited Under in Vivo Conditions. Biochemical Journal, 462, 185-197. [Google Scholar] [CrossRef]
|
|
[37]
|
Dechant, R., Binda, M., Lee, S.S., et al. (2010) Cytosolic PH Is a Second Messenger for Glucose and Regulates the PKA Pathway through V-ATPase. The EMBO Journal, 29, 2515-2526. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Pérez-Sayáns, M., García-García, A., Reboiras-López, M.D., et al. (2009) Role of V-ATPases in Solid Tumors: Importance of the Subunit C (Review). International Journal of Oncology, 34, 1513-1520. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Liu, B., Palmfeldt, J., Lin, L., et al. (2018) STAT3 Associates with Vacuolar H( )-ATPase and Regulates Cytosolic and Lysosomal PH. Cell Research, 28, 996-1012. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Yu, H., Lee, H., Herrmann, A., et al. (2014) Revisiting STAT3 Signalling in Cancer: New and Unexpected Biological Functions. Nature Reviews Cancer, 14, 736-746. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Merkulova, M., Păunescu, T.G., Azroyan, A., et al. (2015) Mapping the H( ) (V)-ATPase Interactome: Identification of Proteins Involved in Trafficking, Folding, Assembly and Phosphorylation. Scientific Reports, 5, Article No. 14827. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Su, Y., Zhou, A., Al-Lamki, R.S., et al. (2003) The A-Subunit of the V-Type H -ATPase Interacts with Phosphofructokinase-1 in Humans. Journal of Biological Chemistry, 278, 20013-20018. [Google Scholar] [CrossRef]
|
|
[43]
|
Su, Y., Blake-Palmer, K.G., Sorrell, S., et al. (2008) Human H ATPase A4 Subunit Mutations Causing Renal Tubular Acidosis Reveal a Role for Interaction with Phosphofructokinase-1. American Journal of Physiology-Renal Physiology, 295, F950-F958. [Google Scholar] [CrossRef] [PubMed]
|