| [1] | Shi, J., Wang, X. and Wang, E. (2023) Mycorrhizal Symbiosis in Plant Growth and Stress Adaptation: From Genes to Ecosystems. Annual Review of Plant Biology, 74, 569-607. https://doi.org/10.1146/annurev-arplant-061722-090342
 | 
                     
                                
                                    
                                        | [2] | Remy, W., Taylor, T.N., Hass, H., et al. (1994) Four Hundred-Million-Year-Old Vesicular Arbuscular Mycorrhizae. Proceedings of the National Academy of Sciences of the United States of America, 91, 11841-11843. https://doi.org/10.1073/pnas.91.25.11841
 | 
                     
                                
                                    
                                        | [3] | Helber, N., Wippel, K., Sauer, N., et al. (2011) A Versatile Monosaccharide Transporter that Operates in the Arbuscular Mycorrhizal Fungus Glomus sp Is Crucial for the Symbiotic Relationship with Plants. The Plant Cell, 23, 3812-3823. https://doi.org/10.1105/tpc.111.089813
 | 
                     
                                
                                    
                                        | [4] | Spanu, P.D., Abbott, J.C., Amselem, J., et al. (2010) Genome Expansion and Gene Loss in Powdery Mildew Fungi Reveal Tradeoffs in Extreme Parasitism. Science, 330, 1543-1546. https://doi.org/10.1126/science.1194573
 | 
                     
                                
                                    
                                        | [5] | Leigh, J., Hodge, A. and Fitter, A.H. (2009) Arbuscular Mycorrhizal Fungi Can Transfer Substantial Amounts of Nitrogen to Their Host Plant from Organic Material. The New Phytologist, 181, 199-207. https://doi.org/10.1111/j.1469-8137.2008.02630.x
 | 
                     
                                
                                    
                                        | [6] | Shi, J., Zhao, B., Zheng, S., et al. (2021) A Phosphate Starvation Response-Centered Network Regulates Mycorrhizal Symbiosis. Cell, 184, 5527-5540. https://doi.org/10.1016/j.cell.2021.09.030
 | 
                     
                                
                                    
                                        | [7] | Bucher, M. (2007) Functional Biology of Plant Phosphate Uptake at Root and Mycorrhiza Interfaces. The New Phytologist, 173, 11-26. https://doi.org/10.1111/j.1469-8137.2006.01935.x
 | 
                     
                                
                                    
                                        | [8] | Harrison, M.J. and Van Buuren, M.L. (1995) A Phosphate Transporter from the Mycorrhizal Fungus Glomus versiforme. Nature, 378, 626-629. https://doi.org/10.1038/378626a0
 | 
                     
                                
                                    
                                        | [9] | Poulsen, K.H., Nagy, R., Gao, L.-L., et al. (2005) Physiological and Molecular Evidence for Pi Uptake via the Symbiotic Pathway in a Reduced Mycorrhizal Colonization Mutant in Tomato Associated with a Compatible Fungus. The New Phytologist, 168, 445-454. https://doi.org/10.1111/j.1469-8137.2005.01523.x
 | 
                     
                                
                                    
                                        | [10] | Javot, H., Penmetsa, R.V., Terzaghi, N., et al. (2007) A Medicago truncatula Phosphate Transporter Indispensable for the Arbuscular Mycorrhizal Symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 104, 1720-1725. https://doi.org/10.1073/pnas.0608136104
 | 
                     
                                
                                    
                                        | [11] | Maeda, D., Ashida, K., Iguchi, K., et al. (2006) Knockdown of an Arbuscular Mycorrhiza-Inducible Phosphate Transporter Gene of Lotus japonicus Suppresses Mutualistic Symbiosis. Plant & Cell Physiology, 47, 807-817. https://doi.org/10.1093/pcp/pcj069
 | 
                     
                                
                                    
                                        | [12] | Van der Heijden, M.G.A., Martin, F.M., Selosse, M.A., et al. (2015) Mycorrhizal Ecology and Evolution: The Past, the Present, and the Future. The New Phytologist, 205, 1406-1423. https://doi.org/10.1111/nph.13288
 | 
                     
                                
                                    
                                        | [13] | Bago, B., Pfeffer, P.E. and Shachar-Hill, Y. (2000) Carbon Metabolism and Transport in Arbuscular Mycorrhizas. Plant Physiology, 124, 949-958. https://doi.org/10.1104/pp.124.3.949
 | 
                     
                                
                                    
                                        | [14] | Fitter, A.H. (2005) Darkness Visible: Reflections on Underground Ecology. Journal of Ecology, 93, 231-243. https://doi.org/10.1111/j.0022-0477.2005.00990.x
 | 
                     
                                
                                    
                                        | [15] | Buee, M., Rossignol, M., Jauneau, A., et al. (2000) The Pre-Symbiotic Growth of Arbuscular Mycorrhizal Fungi Is Induced by a Branching Factor Partially Purified from Plant Root Exudates. Molecular Plant-Microbe Interactions: MPMI, 13, 693-698. https://doi.org/10.1094/MPMI.2000.13.6.693
 | 
                     
                                
                                    
                                        | [16] | Chabaud, M., Genre, A., Sieberer, B.J., et al. (2011) Arbuscular Mycorrhizal Hyphopodia and Germinated Spore Exudates Trigger Ca2  Spiking in the Legume and Nonlegume Root Epidermis. The New Phytologist, 189, 347-355. https://doi.org/10.1111/j.1469-8137.2010.03464.x
 | 
                     
                                
                                    
                                        | [17] | Al-Babili, S. and Bouwmeester, H.J. (2015) Strigolactones, a Novel Carotenoid-Derived Plant Hormone. Annual Review of Plant Biology, 66, 161-186. https://doi.org/10.1146/annurev-arplant-043014-114759
 | 
                     
                                
                                    
                                        | [18] | Hayward, A., Stirnberg, P., Beveridge, C., et al. (2009) Interactions between Auxin and Strigolactone in Shoot Branching Control. Plant Physiology, 151, 400-412. https://doi.org/10.1104/pp.109.137646
 | 
                     
                                
                                    
                                        | [19] | Proust, H., Hoffmann, B., Xie, X., et al. (2011) Strigolactones Regulate Protonema Branching and Act as a Quorum Sensing-Like Signal in the Moss Physcomitrella Patens. Development, 138, 1531-1539. https://doi.org/10.1242/dev.058495
 | 
                     
                                
                                    
                                        | [20] | Akiyama, K., Matsuzaki, K. and Hayashi, H. (2005) Plant Sesquiterpenes Induce Hyphal Branching in Arbuscular Mycorrhizal Fungi. Nature, 435, 824-827. https://doi.org/10.1038/nature03608
 | 
                     
                                
                                    
                                        | [21] | Gomez-Roldan, V., Fermas, S., Brewer, P.B., et al. (2008) Strigolactone Inhibition of Shoot Branching. Nature, 455, 189-194. https://doi.org/10.1038/nature07271
 | 
                     
                                
                                    
                                        | [22] | Lopez-Obando, M., Ligerot, Y., Bonhomme, S., et al. (2015) Strigolactone Biosynthesis and Signaling in Plant Development. Development, 142, 3615-3619. https://doi.org/10.1242/dev.120006
 | 
                     
                                
                                    
                                        | [23] | Yoneyama, K., Yoneyama, K., Takeuchi, Y., et al. (2007) Phosphorus Deficiency in Red Clover Promotes Exudation of Orobanchol, the Signal for Mycorrhizal Symbionts and Germination Stimulant for Root Parasites. Planta, 225, 1031-1038. https://doi.org/10.1007/s00425-006-0410-1
 | 
                     
                                
                                    
                                        | [24] | Nadal, M., Sawers, R., Naseem, S., et al. (2017) An N-Acetylglucosamine Transporter Required for Arbuscular Mycorrhizal Symbioses in Rice and Maize. Nat Plants, 3, Article 17073. https://doi.org/10.1038/nplants.2017.73
 | 
                     
                                
                                    
                                        | [25] | Besserer, A., Bécard, G., Jauneau, A., et al. (2008) GR24, a Synthetic Analog of Strigolactones, Stimulates the Mitosis and Growth of the Arbuscular Mycorrhizal Fungus Gigaspora rosea by Boosting Its Energy Metabolism. Plant Physiology, 148, 402-413. https://doi.org/10.1104/pp.108.121400
 | 
                     
                                
                                    
                                        | [26] | Genre, A., Chabaud, M., Balzergue, C., et al. (2013) Short-Chain Chitin Oligomers from Arbuscular Mycorrhizal Fungi Trigger Nuclear Ca2  Spiking in Medicago truncatula Roots and Their Production Is Enhanced by Strigolactone. The New Phytologist, 198, 190-202. https://doi.org/10.1111/nph.12146
 | 
                     
                                
                                    
                                        | [27] | Besserer, A., Puech-Pagès, V., Kiefer, P., et al. (2006) Strigolactones Stimulate Arbuscular Mycorrhizal Fungi by Activating Mitochondria. PLOS Biology, 4, e226. https://doi.org/10.1371/journal.pbio.0040226
 | 
                     
                                
                                    
                                        | [28] | Chabaud, M., Venard, C., Defaux-Petras, A., et al. (2002) Targeted Inoculation of Medicago truncatula in vitro Root Cultures Reveals MtENOD11 Expression during Early Stages of Infection by Arbuscular Mycorrhizal Fungi. The New Phytologist, 156, 265-273. https://doi.org/10.1046/j.1469-8137.2002.00508.x
 | 
                     
                                
                                    
                                        | [29] | Maillet, F., Poinsot, V., André, O., et al. (2011) Fungal Lipochitooligosaccharide Symbiotic Signals in Arbuscular Mycorrhiza. Nature, 469, 58-63. https://doi.org/10.1038/nature09622
 | 
                     
                                
                                    
                                        | [30] | Kosuta, S., Chabaud, M., Lougnon, G., et al. (2003) A Diffusible Factor from Arbuscular Mycorrhizal Fungi Induces Symbiosis-Specific MtENOD11 Expression in Roots of Medicago truncatula. Plant Physiology, 131, 952-962. https://doi.org/10.1104/pp.011882
 | 
                     
                                
                                    
                                        | [31] | Oláh, B., Brière, C., Bécard, G., et al. (2005) Nod Factors and a Diffusible Factor from Arbuscular Mycorrhizal Fungi Stimulate Lateral Root Formation in Medicago truncatula via the DMI1/DMI2 Signalling Pathway. The Plant Journal: For Cell and Molecular Biology, 44, 195-207. https://doi.org/10.1111/j.1365-313X.2005.02522.x
 | 
                     
                                
                                    
                                        | [32] | Gutjahr, C., Novero, M., Guether, M., et al. (2009) Presymbiotic Factors Released by the Arbuscular Mycorrhizal Fungus Gigaspora margarita Induce Starch Accumulation in Lotus japonicus Roots. The New Phytologist, 183, 53-61. https://doi.org/10.1111/j.1469-8137.2009.02871.x
 | 
                     
                                
                                    
                                        | [33] | Kuhn, H., Küster, H. and Requena, N. (2010) Membrane Steroid-Binding Protein 1 Induced by a Diffusible Fungal Signal Is Critical for Mycorrhization in Medicago truncatula. The New Phytologist, 185, 716-733. https://doi.org/10.1111/j.1469-8137.2009.03116.x
 | 
                     
                                
                                    
                                        | [34] | Oldroyd, G.E. (2013) Speak, Friend, and Enter: Signalling Systems that Promote Beneficial Symbiotic Associations in Plants. Nature Reviews Microbiology, 11, 252-263. https://doi.org/10.1038/nrmicro2990
 | 
                     
                                
                                    
                                        | [35] | Akiyama, K. and Hayashi, H. (2006) Strigolactones: Chemical Signals for Fungal Symbionts and Parasitic Weeds in Plant Roots. Annals of Botany, 97, 925-931. https://doi.org/10.1093/aob/mcl063
 | 
                     
                                
                                    
                                        | [36] | Harrison, M.J. (2005) Signaling in the Arbuscular Mycorrhizal Symbiosis. Annual Review of Microbiology, 59, 19-42. https://doi.org/10.1146/annurev.micro.58.030603.123749
 | 
                     
                                
                                    
                                        | [37] | Bonfante, P. and Genre, A. (2010) Mechanisms Underlying Beneficial Plant-Fungus Interactions in Mycorrhizal Symbiosis. Nature Communications, 1, Article No. 48. https://doi.org/10.1038/ncomms1046
 | 
                     
                                
                                    
                                        | [38] | Genre, A., Chabaud, M., Faccio, A., et al. (2008) Prepenetration Apparatus Assembly Precedes and Predicts the Colonization Patterns of Arbuscular Mycorrhizal Fungi within the Root Cortex of Both Medicago truncatula and Daucus carota. The Plant Cell, 20, 1407-1420. https://doi.org/10.1105/tpc.108.059014
 | 
                     
                                
                                    
                                        | [39] | Parniske, M. (2008) Arbuscular Mycorrhiza: The Mother of Plant Root Endosymbioses. Nature Reviews Microbiology, 6, 763-775. https://doi.org/10.1038/nrmicro1987
 | 
                     
                                
                                    
                                        | [40] | Sieberer, B.J., Chabaud, M., Fournier, J., et al. (2012) A Switch in Ca2  Spiking Signature Is Concomitant with Endosymbiotic Microbe Entry into Cortical Root Cells of Medicago truncatula. The Plant Journal: For Cell and Molecular Biology, 69, 822-830. https://doi.org/10.1111/j.1365-313X.2011.04834.x
 | 
                     
                                
                                    
                                        | [41] | Genre, A., Chabaud, M., Timmers, T., et al. (2005) Arbuscular Mycorrhizal Fungi Elicit a Novel Intracellular Apparatus in Medicago truncatula Root Epidermal Cells before Infection. The Plant Cell, 17, 3489-3499. https://doi.org/10.1105/tpc.105.035410
 | 
                     
                                
                                    
                                        | [42] | Harrison, M.J., Dewbre, G.R. and Liu, J. (2002) A Phosphate Transporter from Medicago truncatula Involved in the Acquisition of Phosphate Released by Arbuscular Mycorrhizal Fungi. The Plant Cell, 14, 2413-2429. https://doi.org/10.1105/tpc.004861
 | 
                     
                                
                                    
                                        | [43] | Kobae, Y. and Fujiwara, T. (2014) Earliest Colonization Events of Rhizophagus irregularis in Rice Roots Occur Preferentially in Previously Uncolonized Cells. Plant & Cell Physiology, 55, 1497-1510. https://doi.org/10.1093/pcp/pcu081
 | 
                     
                                
                                    
                                        | [44] | Kobae, Y., Tamura, Y., Takai, S., et al. (2010) Localized Expression of Arbuscular Mycorrhiza-Inducible Ammonium Transporters in Soybean. Plant & Cell Physiology, 51, 1411-1415. https://doi.org/10.1093/pcp/pcq099
 | 
                     
                                
                                    
                                        | [45] | Pumplin, N., Mondo, S.J., Topp, S., et al. (2010) Medicago truncatula Vapyrin Is a Novel Protein Required for Arbuscular Mycorrhizal Symbiosis. The Plant Journal: For Cell and Molecular Biology, 61, 482-494. https://doi.org/10.1111/j.1365-313X.2009.04072.x
 | 
                     
                                
                                    
                                        | [46] | Takeda, N., Sato, S., Asamizu, E., et al. (2009) Apoplastic Plant Subtilases Support Arbuscular Mycorrhiza Development in Lotus japonicus. The Plant Journal: For Cell and Molecular Biology, 58, 766-777. https://doi.org/10.1111/j.1365-313X.2009.03824.x
 | 
                     
                                
                                    
                                        | [47] | Takeda, N., Maekawa, T. and Hayashi, M. (2012) Nuclear-Localized and Deregulated Calcium-and Calmodulin-Dependent Protein Kinase Activates Rhizobial and Mycorrhizal Responses in Lotus japonicus. The Plant Cell, 24, 810-822. https://doi.org/10.1105/tpc.111.091827
 | 
                     
                                
                                    
                                        | [48] | Pumplin, N., Zhang, X., Noar, R.D., et al. (2012) Polar Localization of a Symbiosis-Specific Phosphate Transporter Is Mediated by a Transient Reorientation of Secretion. Proceedings of the National Academy of Sciences of the United States of America, 109, E665-E672. https://doi.org/10.1073/pnas.1110215109
 | 
                     
                                
                                    
                                        | [49] | Gutjahr, C. and Parniske, M. (2013) Cell and Developmental Biology of Arbuscular Mycorrhiza Symbiosis. Annual Review of Cell and Developmental Biology, 29, 593-617. https://doi.org/10.1146/annurev-cellbio-101512-122413
 | 
                     
                                
                                    
                                        | [50] | Demchenko, K., Winzer, T., Stougaard, J., et al. (2004) Distinct Roles of Lotus japonicus SYMRK and SYM15 in Root Colonization and Arbuscule Formation. The New Phytologist, 163, 381-392. https://doi.org/10.1111/j.1469-8137.2004.01123.x
 | 
                     
                                
                                    
                                        | [51] | Kistner, C., Winzer, T., Pitzschke, A., et al. (2005) Seven Lotus japonicus Genes Required for Transcriptional Reprogramming of the Root during Fungal and Bacterial Symbiosis. The Plant Cell, 17, 2217-2229. https://doi.org/10.1105/tpc.105.032714
 | 
                     
                                
                                    
                                        | [52] | Yang, S.Y., Grønlund, M., Jakobsen, I., et al. (2012) Nonredundant Regulation of Rice Arbuscular Mycorrhizal Symbiosis by Two Members of the Phosphate Transporter1 Gene Family. The Plant Cell, 24, 4236-4251. https://doi.org/10.1105/tpc.112.104901
 |