|
[1]
|
Breitbart, M. and Rohwer, F. (2005) Here a Virus, There a Virus, Everywhere the Same Virus? Trends in Microbiology, 13, 278-284. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Martínez-Acuña, N., Lozano-Sepúlveda, S.A., Del Carmen Martínez-Guzmán, M. and Rivas-Estilla, A.M. (2022) Tiny Regulators in Viral Infection: Carving SARS-CoV-2 by MiRNAs. Microrna, 11, 185-189. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Katsarou, K., Bardani, E., Kallemi, P. and Kalantidis, K. (2019) Viral Detection: Past, Present, and Future. Bioessays, 41, E1900049. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Paez-Espino, D., Eloe-Fadrosh, E.A., Pavlopoulos, G.A., Thomas, A.D., Huntemann, M., Mikhailova, N., Rubin, E., Ivanova, N.N. and Kyrpides, N.C. (2016) Uncovering Earth’s Virome. Nature, 536, 425-430. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Woolhouse, M. and Gaunt, E. (2007) Ecological Origins of Novel Human Pathogens. Critical Reviews in Microbiology, 33, 231-242. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Riedel, S. (2005) Edward Jenner and the History of Smallpox and Vaccination. Baylor University Medical Center Proceedings, 18, 21-25. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Zahra, A., Hussain, T. and Sherwani, S.K. (2020) Life after COVID-19 Outbreak: Expectations and Thoughts. Advancements in Life Sciences, 7, 208-214.
|
|
[8]
|
Roshal, D., Konevtsova, O., Lošdorfer Božič, A., et al. (2019) PH-Induced Morphological Changes of Proteinaceous Viral Shells. Scientific Reports, 9, Article No. 5341. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Mateu, M.G. (2013) Introduction: The Structural Basis of Virus Function. In: Mateu, M.G., Ed., Structure and Physics of Viruses: An Integrated Textbook, Springer, Berlin, 3-51. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Nayak, D.P. (2000) Virus Morphology, Replication, and Assembly. In: Hurst, C.J., Ed., Viral Ecology, Elsevier, Amsterdam, 63-124. [Google Scholar] [CrossRef]
|
|
[11]
|
Louten, J. (2016) Virus Structure and Classification. In: Louten, J., Ed., Essential Human Virology, Elsevier, Amsterdam, 19-29. [Google Scholar] [CrossRef]
|
|
[12]
|
Hull, R. and Rima, B. (2020) Virus Taxonomy and Classification: Naming of Virus Species. Archives of Virology, 165, 2733-2736. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Ma, Z., Ni, G. and Damania, B. (2018) Innate Sensing of DNA Virus Genomes. Annual Review of Virology, 5, 341-362. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Chang, J. (2021) Adenovirus Vectors: Excellent Tools for Vaccine Development. Immune Network, 21, E6. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Raja, P., Lee, J.S., Pan, D., Pesola, J.M., Coen, D.M. and Knipe, D.M. (2016) A Herpesviral Lytic Protein Regulates the Structure of Latent Viral Chromatin. MBio, 7, 1. [Google Scholar] [CrossRef]
|
|
[16]
|
Turnell, A.S. and Grand, R.J. (2012) DNA Viruses and the Cellular DNA-Damage Response. Journal of General Virology, 93, 2076-2097. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Kaján, G.L., Doszpoly, A., Tarján, Z.L., et al. (2020) Virus-Host Coevolution with a Focus on Animal and Human DNA Viruses. Journal of Molecular Evolution, 88, 41-56. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Payne, S. (2017) Introduction to RNA Viruses. In: Payne, S., Ed., Viruses, Elsevier, Amsterdam, 97-105. [Google Scholar] [CrossRef]
|
|
[19]
|
Chen, Y.G. and Hur, S. (2022) Cellular Origins of DsRNA, Their Recognition and Consequences. Nature Reviews Molecular Cell Biology, 23, 286-301. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Šantak, M. and Matić, Z. (2022) The Role of Nucleoprotein in Immunity to Human Negative-Stranded RNA Viruses—Not Just Another Brick in the Viral Nucleocapsid. Viruses, 14, Article No. 521. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Strauss, J.H. and Strauss, E.G. (2008) Plus-Strand RNA Viruses. In: Strauss, J.H. and Strauss, E.G., Eds., Viruses and Human Disease, Elsevier, Amsterdam, 63-136. [Google Scholar] [CrossRef]
|
|
[22]
|
Burrell, C.J., Howard, C.R. and Murphy, F.A. (2017) Virus Replication. In: Burrell, C.J., Howard, C.R. and Murphy, F.A., Eds., Fenner and White’s Medical Virology, Elsevier, Amsterdam, 39-55. [Google Scholar] [CrossRef]
|
|
[23]
|
Louten, J. (2016) Virus Replication. In: Louten, J., Ed., Essential Human Virology, Elsevier, Amsterdam, 49-70. [Google Scholar] [CrossRef]
|
|
[24]
|
Rampersad, S. and Tennant, P. (2018) Replication and Expression Strategies of Viruses. In: Tennant, P., Fermin, G. and Foster, J.E., Eds., Viruses, Elsevier, Amsterdam, 55-82. [Google Scholar] [CrossRef]
|
|
[25]
|
Cann, A.J. (2008) Replication of Viruses. In: Mahy, B.W.J. and Van Regenmortel, M.H.V., Eds., Encyclopedia of Virology, Elsevier, Amsterdam, 406-412. [Google Scholar] [CrossRef]
|
|
[26]
|
Serva, S. and Nagy, P.D. (2006) Proteomics Analysis of the Tombusvirus Replicase: Hsp70 Molecular Chaperone Is Associated with the Replicase and Enhances Viral RNA Replication. Journal of Virology, 80, 2162-2169. [Google Scholar] [CrossRef]
|
|
[27]
|
Pan, J.A., Peng, X., Gao, Y., et al. (2008) Genome-Wide Analysis of Protein-Protein Interactions and Involvement of Viral Proteins in SARS-CoV Replication. PLOS ONE, 3, E3299. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Chen, X., Liu, S., Goraya, M.U., Maarouf, M., Huang, S. and Chen, J.L. (2018) Host Immune Response to Influenza a Virus Infection. Frontiers in Immunology, 9, Article No. 320. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Frazer, I.H. (2009) Interaction of Human Papillomaviruses with the Host Immune System: A Well Evolved Relationship. Virology, 384, 410-414. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Diamond, M.S. and Kanneganti, T.D. (2022) Innate Immunity: The First Line of Defense against SARS-CoV-2. Nature Immunology, 23, 165-176. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Alcami, A., Ghazal, P. and Yewdell, J.W. (2002) Viruses in Control of the Immune System. Workshop on Molecular Mechanisms of Immune Modulation: Lessons from Viruses. EMBO Reports, 3, 927-932. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Duerkop, B.A. and Hooper, L.V. (2013) Resident Viruses and Their Interactions with the Immune System. Nature Immunology, 14, 654-659. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Uematsu, S. and Akira, S. (2006) Innate Immune Recognition of Viral Infection. Uirusu, 56, 1-8. (In Japanese) [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Huang, X. and Yang, Y. (2009) Innate Immune Recognition of Viruses and Viral Vectors. Human Gene Therapy, 20, 293-301. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Rouse, B.T. and Sehrawat, S. (2010) Immunity and Immunopathology to Viruses: What Decides the Outcome? Nature Reviews Immunology, 10, 514-526. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Aoshi, T., Koyama, S., Kobiyama, K., Akira, S. and Ishii, K.J. (2011) Innate and Adaptive Immune Responses to Viral Infection and Vaccination. Current Opinion in Virology, 1, 226-232. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Aristizábal, B. and González, Á. (2013) Innate Immune System. In: Anaya, J.M., Shoenfeld, Y., Rojas-Villarraga, A., et al., Eds., Autoimmunity: From Bench to Bedside [Internet], El Rosario University Press, Bogota, 31, 39.
|
|
[38]
|
Cruvinel Wde, M., Mesquita, D, Araújo, J.A., Catelan, T.T., De Souza, A.W., Da Silva, N.P. and Andrade, L.E. (2010) Immune System—Part I. Fundamentals of Innate Immunity with Emphasis on Molecular and Cellular Mechanisms of Inflammatory Response. Revista Brasileira de Reumatologia, 50, 434-461. [Google Scholar] [CrossRef]
|
|
[39]
|
Kasuga, Y., Zhu, B., Jang, K.J. and Yoo, J.S. (2021) Innate Immune Sensing of Coronavirus and Viral Evasion Strategies. Experimental & Molecular Medicine, 53, 723-736. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Schenten, D. and Medzhitov, R. (2011) The Control of Adaptive Immune Responses by the Innate Immune System. Advances in Immunology, 109, 87-124. [Google Scholar] [CrossRef]
|
|
[41]
|
Medzhitov, R. and Janeway, C.A. (1998) Innate Immune Recognition and Control of Adaptive Immune Responses. Seminars in Immunology, 10, 351-353. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Barton, G.M. and Medzhitov, R. (2002) Control of Adaptive Immune Responses by Toll-Like Receptors. Current Opinion in Immunology, 14, 380-383. [Google Scholar] [CrossRef]
|
|
[43]
|
Clem, A.S. (2011) Fundamentals of Vaccine Immunology. Journal of Global Infectious Diseases, 3, 73-78. [Google Scholar] [CrossRef]
|
|
[44]
|
Wang, B., Xi, X., Lei, X., et al. (2013) Enterovirus 71 Protease 2Apro Targets MAVS to Inhibit Anti-Viral Type Interferon Responses. PLOS Pathogens, 9, E1003231. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Rajsbaum, R. and Garcia-Sastre, A. (2013) Viral Evasion Mechanisms of Early Antiviral Responses Involving Regulation of Ubiquitin Pathways. Trends in Microbiology, 21, 421-429. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Van Gent, M., Gram, A.M., Boer, I.G., et al. (2015) Silencing the Shutoff Protein of Epstein-Barr Virus in Productively Infected B Cells Points to (Innate) Targets for Immune Evasion. Journal of General Virology, 96, 858-865. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Lei, X., Liu, X., Ma, Y., et al. (2010) The 3C Protein of Enterovirus 71 Inhibits Retinoid Acid-Inducible Gene I-Mediated Interferon Regulatory Factor 3 Activation and Type I Interferon Responses. Journal of Virology, 84, 8051-8061. [Google Scholar] [CrossRef]
|
|
[48]
|
Ding, Q., Cao, X., Lu, J., et al. (2013) Hepatitis C Virus NS4B Blocks the Interaction of STING and TBK1 to Evade Host Innate Immunity. Journal of Hepatology, 59, 52-58. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Keating, S.E., Maloney, G.M., Moran, E.M., et al. (2007) IRAK-2 Participates in Multiple Toll-Like Receptor Signaling Pathways to NFkappaB via Activation of TRAF6 Ubiquitination. Journal of Biological Chemistry, 282, 33435-33443. [Google Scholar] [CrossRef]
|
|
[50]
|
Cardenas, W.B., Loo, Y.M., Gale, M., et al. (2006) Ebola Virus VP35 Protein Binds Double-Stranded RNA and Inhibits α/β Interferon Production Induced by RIG-I Signaling. Journal of Virology, 80, 5168-5178. [Google Scholar] [CrossRef]
|
|
[51]
|
Lei, X., Bai, Z., Ye, F., et al. (2010) Regulation of NF-κB Inhibitor IκBα and Viral Replication by a KSHV MicroRNA. Nature Cell Biology, 12, 193-199. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Huang, Y., Qi, Y., Ma, Y., et al. (2013) The Expression of Interleukin-32 Is Activated by Human Cytomegalovirus Infection and Down Regulated by Hcmv-MiR-UL112-1. Virology Journal, 10, Article No. 51. [Google Scholar] [CrossRef]
|
|
[53]
|
Ho, B.C., Yu, I.S., Lu, L.F., et al. (2014) Inhibition of MiR-146a Prevents Enterovirus-Induced Death by Restoring the Production of Type I Interferon. Nature Communications, 5, Article No. 3344. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Xu, C., He, X., Zheng, Z., et al. (2014) Downregulation of MicroRNA MiR-526a by Enterovirus Inhibits RIG-I-Dependent Innate Immune Response. Journal of Virology, 88, 11356-11368. [Google Scholar] [CrossRef]
|
|
[55]
|
Lazarevic, I., Banko, A., Miljanovic, D., et al. (2019) Immune-Escape Hepatitis B Virus Mutations Associated with Viral Reactivation upon Immunosuppression. Viruses, 11, Article No. 778. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Hoffmann, M., Krüger, N., Schulz, S., et al. (2022) The Omicron Variant Is Highly Resistant against Antibody-Mediated Neutralization: Implications for Control of the COVID-19 Pandemic. Cell, 185, 447-456.E11. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Bayarri-Olmos, R., Jarlhelt, I., Johnsen, L.B., et al. (2021) Functional Effects of Receptor-Binding Domain Mutations of SARS-CoV-2 B.1.351 and P.1 Variants. Frontiers in Immunology, 12, Article ID: 757197. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Wahid, M., Jawed, A., Mandal, R.K., et al. (2021) Variants of SARS-CoV-2, Their Effects on Infection, Transmission and Neutralization by Vaccine-Induced Antibodies. European Review for Medical and Pharmacological Sciences, 25, 5857-5864.
|
|
[59]
|
Yi, C.Y., Sun, X.Y., Lin, Y.X., et al. (2021) Comprehensive Mapping of Binding Hot Spots of SARS-CoV-2 RBD-Specific Neutralizing Antibodies for Tracking Immune Escape Variants. Genome Medicine, 13, Article No. 164. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Meganck, R.M. and Baric, R.S. (2021) Developing Therapeutic Approaches for Twenty-First-Century Emerging Infectious Viral Diseases. Nature Medicine, 27, 401-410. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Felsenstein, S., et al. (2020) COVID-19: Immunology and Treatment Options. Clinical Immunology, 215, Article ID: 108448. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Vallianou, N.G., et al. (2021) Anti-Viral Treatment for SARS-CoV-2 Infection: A Race against Time amidst the Ongoing Pandemic. Metabolism Open, 10, Article ID: 100096. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Urban, S., Neumann-Haefelin, C. and Lampertico, P. (2021) Hepatitis D Virus in 2021: Virology, Immunology and New Treatment Approaches for a Difficult-to-Treat Disease. Gut, 70, 1782-1794. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Lee, S., et al. (2021) Virus-Induced Senescence Is a Driver and Therapeutic Target in COVID-19. Nature, 599, 283-289. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Medhi, R., et al. (2020) Nanoparticle-Based Strategies to Combat COVID-19. ACS Applied Nano Materials, 3, 8557-8580. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Finlay, B.B. and McFadden, G. (2006) Anti-Immunology: Evasion of the Host Immune System by Bacterial and Viral Pathogens. Cell, 124, 767-782. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Lunney, J.K., Fang, Y., Ladinig, A., Chen, N., Li, Y., Rowland, B. and Renukaradhya, G.J. (2016) Porcine Reproductive and Respiratory Syndrome Virus (PRRSV): Pathogenesis and Interaction with the Immune System. Annual Review of Animal Biosciences, 4, 129-154. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Dokland, T. (2010) The Structural Biology of PRRSV. Virus Research, 154, 86-97. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Ruedas-Torres, I., Rodríguez-Gómez, I.M., Sánchez-Carvajal, J.M., Larenas-Muñoz, F., Pallarés, F.J., Carrasco, L. and Gómez-Laguna, J. (2021) The Jigsaw of PRRSV Virulence. Veterinary Microbiology, 260, Article ID: 109168. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Murtaugh, M.P., Xiao, Z. and Zuckermann, F. (2002) Immunological Responses of Swine to Porcine Reproductive and Respiratory Syndrome Virus Infection. Viral Immunology, 15, 533-547. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Zhou, X., Ramachandran, S., Mann, M. and Popkin, D.L. (2012) Role of Lymphocytic Choriomeningitis Virus (LCMV) in Understanding Viral Immunology: Past, Present and Future. Viruses, 4, 2650-2669. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Maes, P., Clement, J., Gavrilovskaya, I. and Van Ranst, M. (2004) Hantaviruses: Immunology, Treatment, and Prevention. Viral Immunology, 17, 481-497. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Rahe, M.C. and Murtaugh, M.P. (2017) Effector Mechanisms of Humoral Immunity to Porcine Reproductive and Respiratory Syndrome Virus. Veterinary Immunology and Immunopathology, 186, 15-18. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Reid, T., Galanis, E., Abbruzzese, J., Sze, D., Wein, L.M., Andrews, J., Randlev, B., Heise, C., Uprichard, M., Hatfield, M., Rome, L., Rubin, J. and Kirn, D. (2002) Hepatic Arterial Infusion of a Replication-Selective Oncolytic Adenovirus (Dl1520): Phase II Viral, Immunologic, and Clinical Endpoints. Cancer Research, 62, 6070-6079.
|
|
[75]
|
Sreepadmanabh, M., Sahu, A.K. and Chande, A. (2020) COVID-19: Advances in Diagnostic Tools, Treatment Strategies, and Vaccine Development. Journal of Biosciences, 45, Article No. 148. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Jayawardena, R., Sooriyaarachchi, P., Chourdakis, M., Jeewandara, C. and Ranasinghe, P. (2020) Enhancing Immunity in Viral Infections, with Special Emphasis on COVID-19: A Review. Diabetology Metabolic Syndrome, 14, 367-382. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Primorac, D., Vrdoljak, K., Brlek, P., Pavelić, E., Molnar, V., Matišić, V., Erceg Ivkošić, I. and Parčina, M. (2022) Adaptive Immune Responses and Immunity to SARS-CoV-2. Frontiers in Immunology, 13, Article ID: 848582. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Jeyanathan, M., Afkhami, S., Kang, A. and Xing, Z. (2023) Viral-Vectored Respiratory Mucosal Vaccine Strategies. Current Opinion in Immunology, 84, Article ID: 102370. [Google Scholar] [CrossRef] [PubMed]
|