具有 Stein-Weiss 卷积部分的临界椭圆型方程 的正解
Positive Solution for the Critical Elliptic Equation with Stein-Weiss Type Convolution Parts
摘要: 本文研究了具有 Stein-Weiss 卷积部分的临界椭圆方程, (1) 其中 α ≥ 0,N > 4,0 < µ < N,0 < 2α + µ < 4,且 Ω 是 RN 中包含原点的C1 开有界域。我们证明了当 > 0 且 2 < p < 2∗α,µ时,方程 (2) 存在一个正的基态解。
Abstract: In this paper, we investigate the following critical elliptic equation with Stein-Weiss type convolution parts , (1) where α ≥ 0, N > 4, 0 < µ < N, 0 < 2α + µ < 4, and Ω is a C1 open bounded domain in RN that contains the origin. We show that when > 0 and 2 < p < 2∗α,µ , problem (2) possesses a positive ground state solution.
文章引用:顾啸风. 具有 Stein-Weiss 卷积部分的临界椭圆型方程 的正解[J]. 应用数学进展, 2024, 13(5): 2110-2124. https://doi.org/10.12677/AAM.2024.135199

参考文献

[1] Brézis, H. and Nirenberg, L. (1983) Positive Solutions of Nonlinear Elliptic Equations Involving Critical Sobolev Exponents. Communications on Pure and Applied Mathematics, 36, 437-477. [Google Scholar] [CrossRef
[2] [ Capozzi, A., Fortunato, D. and Palmieri, G. (1985) An Existence Result for Nonlinear Elliptic Problems Involving Critical Sobolev Exponent. Annales de l’Institut Henri Poincaré C, Analyse non linéaire, 2, 463-470. [Google Scholar] [CrossRef
[3] Guo, Z. (2016) Ground States for a Nonlinear Elliptic Equation Involving Multiple Hardy- Sobolev Critical Exponents. Advanced Nonlinear Studies, 16, 333-344. [Google Scholar] [CrossRef
[4] Liu, F., Yang, J. and Yu, X. (2023) Positive Solutions to Multi-Critical Elliptic Problems. Annali di Matematica Pura ed Applicata, 202, 851-875. [Google Scholar] [CrossRef
[5] Cao, D. and Peng, S. (2003) A Note on the Sign-Changing Solutions to Elliptic Problems with Critical Sobolev and Hardy Terms. Journal of Differential Equations, 193, 424-434. [Google Scholar] [CrossRef
[6] Gao, F. and Yang, M. (2018) The Brezis-Nirenberg Type Critical Problem for the Nonlinear Choquard Equation. Science China Mathematics, 61, 1219-1242. [Google Scholar] [CrossRef
[7] Stein, E.M. and Weiss, G. (1958) Fractional Integrals on N-Dimensional Euclidean Space. Journal of Mathematics and Mechanics, 7, 503-514. [Google Scholar] [CrossRef
[8] Liu, S. (2009) Regularity, Symmetry, and Uniqueness of Some Integral Type Quasilinear E- quations. Nonlinear Analysis: Theory, Methods Applications, 71, 1796-1806. [Google Scholar] [CrossRef
[9] Lei, Y. (2013) Qualitative Analysis for the Static Hartree-Type Equations. SIAM Journal on Mathematical Analysis, 45, 388-406. [Google Scholar] [CrossRef
[10] Du, L. and Yang, M. (2019) Uniqueness and Nondegeneracy of Solutions for a Critical Nonlocal Equation. Discrete and Continuous Dynamical Systems, 39, 5847-5866. [Google Scholar] [CrossRef
[11] Du, L., Gao, F. and Yang, M. (2022) On Elliptic Equations with Stein-Weiss Type Convolution Parts. Mathematische Zeitschrift, 301, 2185-2225. [Google Scholar] [CrossRef
[12] Melgaard, M., Yang, M. and Zhou, X. (2022) Regularity, Symmetry and Asymptotic Behaviour of Solutions for Some Stein-Weiss-Type Integral Systems. Pacific Journal of Mathematics, 317, 153-186. [Google Scholar] [CrossRef
[13] Willem, M. (1996) Minimax Theorems. In: Progress in Nonlinear Differential Equations and Their Applications, Vol. 24, Birkhäuser, Boston.