|
[1]
|
Brézis, H. and Nirenberg, L. (1983) Positive Solutions of Nonlinear Elliptic Equations Involving Critical Sobolev Exponents. Communications on Pure and Applied Mathematics, 36, 437-477. [Google Scholar] [CrossRef]
|
|
[2]
|
[ Capozzi, A., Fortunato, D. and Palmieri, G. (1985) An Existence Result for Nonlinear Elliptic Problems Involving Critical Sobolev Exponent. Annales de l’Institut Henri Poincaré C, Analyse non linéaire, 2, 463-470. [Google Scholar] [CrossRef]
|
|
[3]
|
Guo, Z. (2016) Ground States for a Nonlinear Elliptic Equation Involving Multiple Hardy- Sobolev Critical Exponents. Advanced Nonlinear Studies, 16, 333-344. [Google Scholar] [CrossRef]
|
|
[4]
|
Liu, F., Yang, J. and Yu, X. (2023) Positive Solutions to Multi-Critical Elliptic Problems. Annali di Matematica Pura ed Applicata, 202, 851-875. [Google Scholar] [CrossRef]
|
|
[5]
|
Cao, D. and Peng, S. (2003) A Note on the Sign-Changing Solutions to Elliptic Problems with Critical Sobolev and Hardy Terms. Journal of Differential Equations, 193, 424-434. [Google Scholar] [CrossRef]
|
|
[6]
|
Gao, F. and Yang, M. (2018) The Brezis-Nirenberg Type Critical Problem for the Nonlinear Choquard Equation. Science China Mathematics, 61, 1219-1242. [Google Scholar] [CrossRef]
|
|
[7]
|
Stein, E.M. and Weiss, G. (1958) Fractional Integrals on N-Dimensional Euclidean Space. Journal of Mathematics and Mechanics, 7, 503-514. [Google Scholar] [CrossRef]
|
|
[8]
|
Liu, S. (2009) Regularity, Symmetry, and Uniqueness of Some Integral Type Quasilinear E- quations. Nonlinear Analysis: Theory, Methods Applications, 71, 1796-1806. [Google Scholar] [CrossRef]
|
|
[9]
|
Lei, Y. (2013) Qualitative Analysis for the Static Hartree-Type Equations. SIAM Journal on Mathematical Analysis, 45, 388-406. [Google Scholar] [CrossRef]
|
|
[10]
|
Du, L. and Yang, M. (2019) Uniqueness and Nondegeneracy of Solutions for a Critical Nonlocal Equation. Discrete and Continuous Dynamical Systems, 39, 5847-5866. [Google Scholar] [CrossRef]
|
|
[11]
|
Du, L., Gao, F. and Yang, M. (2022) On Elliptic Equations with Stein-Weiss Type Convolution Parts. Mathematische Zeitschrift, 301, 2185-2225. [Google Scholar] [CrossRef]
|
|
[12]
|
Melgaard, M., Yang, M. and Zhou, X. (2022) Regularity, Symmetry and Asymptotic Behaviour of Solutions for Some Stein-Weiss-Type Integral Systems. Pacific Journal of Mathematics, 317, 153-186. [Google Scholar] [CrossRef]
|
|
[13]
|
Willem, M. (1996) Minimax Theorems. In: Progress in Nonlinear Differential Equations and Their Applications, Vol. 24, Birkhäuser, Boston.
|