摘要: 本文研究了具有 Stein-Weiss 卷积部分的临界椭圆方程

, (1) 其中 α ≥ 0,N > 4,0 < µ < N,0 < 2α + µ < 4,

且 Ω 是 R
N 中包含原点的C
1 开有界域。我们证明了当 > 0 且 2 < p < 2∗
α,µ时,方程 (2) 存在一个正的基态解。
Abstract:
In this paper, we investigate the following critical elliptic equation with Stein-Weiss type convolution parts

, (1) where α ≥ 0, N > 4, 0 < µ < N, 0 < 2α + µ < 4,

and Ω is a C
1 open bounded domain in R
N that contains the origin. We show that when > 0 and 2 < p < 2∗
α,µ , problem (2) possesses a positive ground state solution.