|
[1]
|
Vincent, A. (2002) Unravelling the Pathogenesis of Myasthenia Gravis. Nature Reviews Immunology, 2, 797-804. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Gilhus, N.E., Tzartos, S., Evoli, A., et al. (2019) Myasthenia Gravis. Nature Reviews Disease Primers, 5, Article No. 30. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Chen, J., Tian, D.C., Zhang, C., et al. (2020) Incidence, Mortality, and Economic Burden of Myasthenia Gravis in China: A Nationwide Population-Based Study. The Lancet Regional Health—Western Pacific, 5, Article ID: 100063. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Hong, Y., Li, H.F., Romi, F., et al. (2018) HLA and MuSK-Positive Myasthenia Gravis: A Systemic Review and Meta-Analysis. Acta Neurologica Scandinavica, 138, 219-226. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Salari, N., Fatahi, B., Bartina, Y., et al. (2021) Global Prevalence of Myasthenia Gravis and the Effectiveness of Common Drugs in Its Treatment: A Systematic Review and Meta-Analysis. Journal of Translational Medicine, 19, Article No. 516. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Bubuioc, A.M., Kudebayeva, A., Turuspekova, S., et al. (2021) The Epidemiology of Myasthenia Gravis. Journal of Medicine and Life Science, 14, 7-16. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Zisimopoulou, P., Evangelakou, P., Tzartos, J., et al. (2014) A Comprehensive Analysis of the Epidemiology and Clinical Characteristics of Anti-LRP4 in Myasthenia Gravis. Journal of Autoimmunity, 52, 139-145. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Lazaridis, K., Tzartos, S.J. (2020) Autoantibody Specificities in Myasthenia Gravis; Implications for Improved Diagnostics and Therapeutics. Frontiers in Immunology, 11, Article 212. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
中国免疫学会神经免疫分会. 中国重症肌无力诊断和治疗指南(2020版) [J]. 中国神经免疫学和神经病学杂志, 2021, 28(1): 1-12.
|
|
[10]
|
Schneider-Gold, C., Hagenacker, T., Melzer, N., et al. (2019) Understanding the Burden of Refractory Myasthenia Gravis. Therapeutic Advances in Neurological Disorders, 12. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Sanders, DB., Wolfe, G.I., Benatar, M., et al. (2016) International Consensusguidance for Management of Myasthenia Gravis: Executivesummary. Neurology, 87, 419-425. [Google Scholar] [CrossRef]
|
|
[12]
|
Jun, H. and Jung, C.W. (2016) Immunoglobulin G4-Related Inflammatory Abdominal Aortic Aneurysm Associated with Myasthenia Gravis, with Contained Rupture. Vascular and Endovascular Surgery, 50, 571-574. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
刘艳全. 重症肌无力治疗中糖皮质激素的应用[J]. 中国医药指南, 2020, 18(7): 118-119.
|
|
[14]
|
Alhaidar, M.K., Abumurad, S., Soliven, B., et al. (2022) Current Treatment of Myasthenia Gravis. Journal of Clinical Medicine, 11, Article 1597. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Skeie, G.O., Apostolski, S., Evoli, A., et al. (2010) Guidelines for Treatment of Autoimmune Neuromuscular Transmission Disorders. European Journal of Neurology, 17, 893-902. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Gilhus, N.E. (2016) Myasthenia Gravis. The New England Journal of Medicine, 375, 2570-2581. [Google Scholar] [CrossRef]
|
|
[17]
|
Lascano, A.M. and Lalive, P.H. (2021) Update in Immunosuppressive Therapy of Myasthenia Gravis. Autoimmunity Reviews, 20, Article ID: 102712. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Narayanaswami, P., Sanders, D.B., Thomas, L., et al. (2024) Comparative Effectiveness of Azathioprine and Mycophenolate Mofetil for Myasthenia Gravis (PROMISE-MG): A Prospective Cohort Study. The Lancet Neurology, 23, 267-276. [Google Scholar] [CrossRef]
|
|
[19]
|
Zhang, C., Bu, B., Yang, H., et al. (2020) Immunotherapy Choice and Maintenance for Generalized Myasthenia Gravis in China. CNS Neuroscience & Therapeutics, 26, 1241-1254. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Flanagan, W.M., CorthÉSy, B., Bram, R.J., et al. (1991) Nuclear Association of a T-Cell Transcription Factor Blocked by FK-506 and Cyclosporin A. Nature, 352, 803-807. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Itani, K., Nakamura, M., Wate, R., et al. (2021) Efficacy and Safety of Tacrolimus as Long-Term Monotherapy for Myasthenia Gravis. Neuromuscular Disorders, 31, 512-518. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Kanai, T., Uzawa, A., Kawaguchi, N., et al. (2017) Adequate Tacrolimus Concentration for Myasthenia Gravis Treatment. European Journal of Neurology, 24, 270-275. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Bi, Z., Cao, Y., Liu, C., et al. (2022) Remission and Relapses of Myasthenia Gravis on Long-Term Tacrolimus: A Retrospective Cross-Sectional Study of a Chinese Cohort. Therapeutic Advances in Chronic Disease, 13. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Shimojima, Y., Matsuda, M., Gono, T., et al. (2006) Tacrolimus in Refractory Patients with Myasthenia Gravis: Coadministration and Tapering of Oral Prednisolone. Journal of Clinical Neuroscience, 13, 39-44. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Zhou, L., Liu, W., Li, W., et al. (2017) Tacrolimus in the Treatment of Myasthenia Gravis in Patients with an Inadequate Response to Glucocorticoid Therapy: Randomized, Double-Blind, Placebo-Controlled Study Conducted in China. Therapeutic Advances in Neurological Disorders, 10, 315-325. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Ponseti, J.M., Azem, J., Fort, J.M., et al. (2005) Benefits of FK506 (Tacrolimus) for Residual, Cyclosporin-and Prednisone-Resistant Myasthenia Gravis: One-Year Follow-Up of an Open-Label Study. Clinical Neurology and Neurosurgery, 107, 187-190. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Fan, Z., Lei, L., Su, S., et al. (2023) Comparison between Mono-Tacrolimus and Mono-Glucocorticoid in the Treatment of Myasthenia Gravis. Annals of Clinical and Translational Neurology, 10, 589-598. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Tindall, R.S., Phillips, J.T., Rollins, J.A., et al. (1993) A Clinical Therapeutic Trial of Cyclosporine in Myasthenia Gravis. Annals of the New York Academy of Sciences, 681, 539-551. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Buzzard, K.A., Meyer, N.J., Hardy, T.A., et al. (2015) Induction Intravenous Cyclophosphamide Followed by Maintenance Oral Immunosuppression in Refractory Myasthenia Gravis. Muscle Nerve, 52, 204-210. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Gomez-Figueroa, E., Garcia-Trejo, S., Bazan-Rodriguez, L., et al. (2020) Intravenous Cyclophosphamide Monthly Pulses in Refractory Myasthenia Gravis. Journal of Neurology, 267, 674-678. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Marino, M., Basile, U., Spagni, G., et al. (2020) Long-Lasting Rituximab-Induced Reduction of Specific—But Not Total—IgG4 in MuSK-Positive Myasthenia Gravis. Frontiers in Immunology, 11, Article 613. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Dos, S.A., Noury, J.B., Genestet, S., et al. (2020) Efficacy and Safety of Rituximab in Myasthenia Gravis: A French Multicentre Real-Life Study. European Journal of Neurology, 27, 2277-2285. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Tandan, R., Hehir, M.N., Waheed, W., et al. (2017) Rituximab Treatment of Myasthenia Gravis: A Systematic Review. Muscle Nerve, 56, 185-196. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Lebrun, C., Bourg, V., Tieulie, N., et al. (2009) Successful Treatment of Refractory Generalized Myasthenia Gravis with Rituximab. European Journal of Neurology, 16, 246-250. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Illa, I., Diaz-Manera, J., Rojas-Garcia, R., et al. (2008) Sustained Response to Rituximab in Anti-AChR and Anti-MuSK Positive Myasthenia Gravis Patients. Journal of Neuroimmunology, 201, 90-94. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Chan, F., Swayne, A., Gillis, D., et al. (2019) Long-Term Follow-Up of Patients with Myasthenia Gravis Treated with Low-Dose Rituximab. Journal of Neurology, Neurosurgery & Psychiatry, 90, 955-956. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Du, Y., Li, C., Hao, Y.F., et al. (2022) Individualized Regimen of Low-Dose Rituximab Monotherapy for New-Onset AChR-Positive Generalized Myasthenia Gravis. Journal of Neurology, 269, 4229-4240. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Frampton, J.E. (2020) Inebilizumab: First Approval. Drugs, 80, 1259-1264. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Gomez, A.M., Willcox, N., Molenaar, P.C., et al. (2012) Targeting Plasma Cells with Proteasome Inhibitors: Possible Roles in Treating Myasthenia Gravis? Annals of the New York Academy of Sciences, 1274, 48-59. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Schneider-Gold, C., Reinacher-Schick, A., Ellrichmann, G., et al. (2017) Bortezomib in Severe MuSK-Antibody Positive Myasthenia Gravis: First Clinical Experience. Therapeutic Advances in Neurological Disorders, 10, 339-341. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Gomez, A.M., Vrolix, K., Martinez-Martinez, P., et al. (2011) Proteasome Inhibition with Bortezomib Depletes Plasma Cells and Autoantibodies in Experimental Autoimmune Myasthenia Gravis. The Journal of Immunology, 186, 2503-2513. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Hewett, K., Sanders, D.B., Grove, R.A., et al. (2018) Randomized Study of Adjunctive Belimumab in Participants with Generalized Myasthenia Gravis. Neurology, 90, E1425-E1434. [Google Scholar] [CrossRef]
|
|
[43]
|
Gomezmancilla, B., Meriggioli, M.N., Genge, A., et al. (2024) Efficacy and Safety of Iscalimab, a Novel Anti-CD40 Monoclonal Antibody, in Moderate-To-Severe Myasthenia Gravis: A Phase 2 Randomized Study. Journal of Clinical Neuroscience, 119, 76-84. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Mihara, M., Kasutani, K., Okazaki, M., et al. (2005) Tocilizumab Inhibits Signal Transduction Mediated by Both MIL-6R and SIL-6R, But Not by the Receptors of Other Members of IL-6 Cytokine Family. International Immunopharmacology, 5, 1731-1740. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Jia, D., Zhang, F., Li, H., et al. (2024) Responsiveness to Tocilizumab in Anti-Acetylcholine Receptor-Positive Generalized Myasthenia Gravis. Aging and Disease, 15, 824-830. [Google Scholar] [CrossRef]
|
|
[46]
|
Jonsson, D.I., Pirskanen, R. and Piehl, F. (2017) Beneficial Effect of Tocilizumab in Myasthenia Gravis Refractory to Rituximab. Neuromuscular Disorders, 27, 565-568. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Schatz-Jakobsen, J.A., Zhang, Y., Johnson, K., et al. (2016) Structural Basis for Eculizumab-Mediated Inhibition of the Complement Terminal Pathway. The Journal of Immunology, 197, 337-344. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Thomas, T.C., Rollins, S.A., Rother, R.P., et al. (1996) Inhibition of Complement Activity by Humanized Anti-C5 Antibody and Single-Chain Fv. Molecular Immunology, 33, 1389-1401. [Google Scholar] [CrossRef]
|
|
[49]
|
Tice, J.A., Touchette, D.R., Lien, P.W., et al. (2022) The Effectiveness and Value of Eculizumab and Efgartigimod for Generalized Myasthenia Gravis. Journal of Managed Care & Specialty Pharmacy, 28, 119-124. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Howard, J.J., Utsugisawa, K., Benatar, M., et al. (2017) Safety and Efficacy of Eculizumab in Anti-Acetylcholine Receptor Antibody-Positive Refractory Generalised Myasthenia Gravis (REGAIN): A Phase 3, Randomised, Double-Blind, Placebo-Controlled, Multicentre Study. The Lancet Neurology, 16, 976-986. [Google Scholar] [CrossRef]
|
|
[51]
|
Muppidi, S., Utsugisawa, K., Benatar, M., et al. (2019) Long-Term Safety and Efficacy of Eculizumab in Generalized Myasthenia Gravis. Muscle Nerve, 60, 14-24. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Nishimura, J.I., Kawaguchi, T., Ito, S., et al. (2023) Real-World Safety Profile of Eculizumab in Patients with Paroxysmal Nocturnal Hemoglobinuria, Atypical Hemolytic Uremic Syndrome, or Generalized Myasthenia Gravis: An Integrated Analysis of Post-Marketing Surveillance in Japan. International Journal of Hematology, 118, 419-431. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Nelke, C., Schroeter, C.B., Stascheit, F., et al. (2022) Eculizumab versus Rituximab in Generalised Myasthenia Gravis. Journal of Neurology, Neurosurgery & Psychiatry, 93, 548-554. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Vu, T., Wiendl, H., Katsuno, M., et al. (2023) Ravulizumab in Myasthenia Gravis: A Review of the Current Evidence. Neuropsychiatric Disease and Treatment, 19, 2639-2655. [Google Scholar] [CrossRef]
|
|
[55]
|
Gorman, D.M., Lee, J., Payne, C.D., et al. (2021) Chemical Synthesis and Characterisation of the Complement C5 Inhibitory Peptide Zilucoplan. Amino Acids, 53, 143-147. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Howard, J.J., Bresch, S., Genge, A., et al. (2023) Safety and Efficacy of Zilucoplan in Patients with Generalised Myasthenia Gravis (RAISE): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Study. The Lancet Neurology, 22, 395-406. [Google Scholar] [CrossRef]
|
|
[57]
|
Howard, J.J., Bril, V., Burns, T.M., et al. (2019) Randomized Phase 2 Study of FcRn Antagonist Efgartigimod in Generalized Myasthenia Gravis. Neurology, 92, e2661-e2673. [Google Scholar] [CrossRef]
|
|
[58]
|
Howard, J.J., Bril, V., Vu, T., et al. (2021) Safety, Efficacy, and Tolerability of Efgartigimod in Patients with Generalised Myasthenia Gravis (ADAPT): A Multicentre, Randomised, Placebo-Controlled, Phase 3 Trial. The Lancet Neurology, 20, 526-536. [Google Scholar] [CrossRef]
|
|
[59]
|
Watanabe, K., Ohashi, S., Watanabe, T., et al. (2024) Case Report: Recovery from Refractory Myasthenic Crisis to Minimal Symptom Expression after Add-On Treatment with Efgartigimod. Frontiers in Neurology, 15, Article 1321058. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Bril, V., Benatar, M., Andersen, H., et al. (2021) Efficacy and Safety of Rozanolixizumab in Moderate to Severe Generalized Myasthenia Gravis: A Phase 2 Randomized Control Trial. Neurology, 96, e853-e865.
|
|
[61]
|
Bril, V., Drużdż, A., Grosskreutz, J., et al. (2023) Safety and Efficacy of Rozanolixizumab in Patients with Generalised Myasthenia Gravis (MycarinG): A Randomised, Double-Blind, Placebo-Controlled, Adaptive Phase 3 Study. The Lancet Neurology, 22, 383-394. [Google Scholar] [CrossRef]
|
|
[62]
|
Yan, C., Duan, R.S., Yang, H., et al. (2022) Therapeutic Effects of Batoclimab in Chinese Patients with Generalized Myasthenia Gravis: A Double-Blinded, Randomized, Placebo-Controlled Phase II Study. Neurology and Therapy, 11, 815-834. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Antozzi, C., Guptill, J., Bril, V., et al. (2024) Safety and Efficacy of Nipocalimab in Patients with Generalized Myasthenia Gravis: Results from the Randomized Phase 2 Vivacity-MG Study. Neurology, 102, e207937. [Google Scholar] [CrossRef]
|