|
[1]
|
Toyofuku, M., Nomura, N. and Eberl, L. (2019) Types and Origins of Bacterial Membrane Vesicles. Nature Reviews Microbiology, 17, 13-24. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Kulp, A. and Kuehn, M.J. (2010) Biological Functions and Biogenesis of Secreted Bacterial Outer Membrane Vesicles. Annual Review of Microbiology, 64, 163-184. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
McCaig, W.D., Koller, A. and Thanassi, D.G. (2013) Production of Outer Membrane Vesicles and Outer Membrane Tubes by Francisella novicida. Journal of Bacteriology, 195, 1120-1132. [Google Scholar] [CrossRef]
|
|
[4]
|
Chatterjee, S.N. and Das, J. (1967) Electron Microscopic Observations on the Excretion of Cell-Wall Material by Vibrio cholerae. The Journal of General Microbiology, 49, 1-11. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Moghimipour, E., Abedishirehjin, S., Baghbadorani, M.A., et al. (2021) Bacteria and Archaea: A New Era of Cancer Therapy. Journal of Controlled Release, 338, 1-7. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Sadeghi, L., Mohit, E., Moallemi, S., et al. (2023) Recent Advances in Various Bio-Applications of Bacteria-Derived Outer Membrane Vesicles. Microbial Pathogenesis, 185, Article ID: 106440. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
VanderPol, L., Stork, M. and VanderLey, P. (2015) Outer Membrane Vesicles as Platform Vaccine Technology. Biotechnology Journal, 10, 1689-706. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Gujrati, V., Kim, S., Kim, S.H., et al. (2014) Bioengineered Bacterial Outer Membrane Vesicles as Cell-Specific Drug-Delivery Vehicles for Cancer Therapy. ACS Nano, 8, 1525-37. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Kim, O.Y., Park, H.T., Dinh, N.T.H., et al. (2017) Bacterial Outer Membrane Vesicles Suppress Tumor by Interferon-γ-Mediated Antitumor Response. Nature Communications, 8, Article No. 626. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Jain, S. and Pillai, J. (2017) Bacterial Membrane Vesicles as Novel Nanosystems for Drug Delivery. International Journal of Nanomedicine, 12, 6329-6341. [Google Scholar] [CrossRef]
|
|
[11]
|
Lei, E.K., Azmat, A., Henry, K.A., et al. (2024) Outer Membrane Vesicles as a Platform for the Discovery of Antibodies to Bacterial Pathogens. Applied Microbiology and Biotechnology, 108, Article No. 232. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Suh, J.W., Kang, J.S., Kim, J.Y., et al. (2024) Characterization of the Outer Membrane Vesicles of Pseudomonas aeruginosa Exhibiting Growth Inhibition against Acinetobacter baumannii. Biomedicines, 12, Article No. 556. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Tashiro, Y., Inagaki, A., Shimizu, M., et al. (2011) Characterization of Phospholipids in Membrane Vesicles Derived from Pseudomonas aeruginosa. Bioscience, Biotechnology, and Biochemistry, 75, 605-607. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Liu, J., Kang, R. and Tang, D. (2024) Lipopolysaccharide Delivery Systems in Innate Immunity. Trends in Immunology. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Renelli, M., Matias, V., Lo, R.Y., et al. (2004) DNA-Containing Membrane Vesicles of Pseudomonas aeruginosa PAO1 and Their Genetic Transformation Potential. Microbiology (Reading), 150, 2161-2169. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Hoekstra, D., Vander Laan, J.W., De Leij, L., et al. (1976) Release of Outer Membrane Fragments from Normally Growing Escherichia coli. Biochimica et Biophysica Acta, 455, 889-899. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Pavkova, I., Bavlovic, J., Kubelkova, K., et al. (2024) Protective Potential of Outer Membrane Vesicles Derived from a Virulent Strain of Francisella tularensis. Frontiers in Microbiology, 15, Article ID: 1355872. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Manabe, T., Kato, M., Ueno, T., et al. (2013) Flagella Proteins Contribute to the Production of Outer Membrane Vesicles from Escherichia coli W3110. Biochemical and Biophysical Research Communications, 441, 151-156. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Lee, E.Y., Bang, J.Y., Park, G.W., et al. (2007) Global Proteomic Profiling of Native Outer Membrane Vesicles Derived from Escherichia coli. Proteomics, 7, 3143-3153. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Yaron, S., Kolling, G.L., Simon, L., et al. (2000) Vesicle-Mediated Transfer of Virulence Genes from Escherichia coli O157:H7 to Other Enteric Bacteria. Applied and Environmental Microbiology, 66, 4414-4420. [Google Scholar] [CrossRef]
|
|
[21]
|
Berlanda Scorza, F., Doro, F., Rodríguez-Ortega, M.J., et al. (2008) Proteomics Characterization of Outer Membrane Vesicles from the Extraintestinal Pathogenic Escherichia coli DeltatolR IHE3034 Mutant. Molecular & Cellular Proteomics, 7, 473-485. [Google Scholar] [CrossRef]
|
|
[22]
|
Kahn, M.E., Maul, G. and Goodgal, S.H. (1982) Possible Mechanism for Donor DNA Binding and Transport in Haemophilus. Proceedings of the National Academy of Sciences of the United States of America, 79, 6370-6374. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Dorward, D.W., Garon, C.F. and Judd, R.C. (1989) Export and Intercellular Transfer of DNA via Membrane Blebs of Neisseria gonorrhoeae. Journal of Bacteriology, 171, 2499-2505. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Dorward, D.W. and Garon, C.F. (1990) DNA Is Packaged within Membrane-Derived Vesicles of Gram-Negative but Not Gram-Positive Bacteria. Applied and Environmental Microbiology, 56, 1960-1962. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Schertzer, J.W. and Whiteley, M. (2012) A Bilayer-Couple Model of Bacterial Outer Membrane Vesicle Biogenesis. MBio, 3, E00297-11. [Google Scholar] [CrossRef]
|
|
[26]
|
Biller, S.J., Schubotz, F., Roggensack, S.E., et al. (2014) Bacterial Vesicles in Marine Ecosystems. Science, 343, 183-186. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Kadurugamuwa, J.L. and Beveridge, T.J. (1995) Virulence Factors Are Released from Pseudomonas aeruginosa in Association with Membrane Vesicles during Normal Growth and Exposure to Gentamicin: A Novel Mechanism of Enzyme Secretion. Journal of Bacteriology, 177, 3998-4008. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Li, M., Zhou, H., Yang, C., et al. (2020) Bacterial Outer Membrane Vesicles as a Platform for Biomedical Applications: An Update. Journal of Controlled Release, 323, 253-268. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Zhou, L., Chen, D.Y., et al. (2019) Escherichia coli Outer Membrane Vesicles Induced DNA Double-Strand Breaks in Intestinal Epithelial Caco-2 Cells. Medical Science Monitor Basic Research, 25, 45-52. [Google Scholar] [CrossRef]
|
|
[30]
|
Choi, M.S., Ze, E.Y., Park, J.Y., et al. (2021) Helicobacter pylori-Derived Outer Membrane Vesicles Stimulate Interleukin 8 Secretion through Nuclear Factor Kappa B Activation. The Korean Journal of Internal Medicine, 36, 854-867. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Bai, J., Kim, S.I., Ryu, S., et al. (2014) Identification and Characterization of Outer Membrane Vesicle-Associated Proteins in Salmonella Enterica Serovar typhimurium. Infection and Immunity, 82, 4001-4010. [Google Scholar] [CrossRef]
|
|
[32]
|
Bauman, S.J. and Kuehn, M.J. (2006) Purification of Outer Membrane Vesicles from Pseudomonas aeruginosa and Their Activation of an IL-8 Response. Microbes and Infection, 8, 2400-2408. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Mat Rani, N.N.I., Alzubaidi, Z.M., Butt, A.M., et al. (2022) Outer Membrane Vesicles as Biomimetic Vaccine Carriers against Infections and Cancers. WIREs Nanomedicine and Nanobiotechnology, 14, E1784. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Schwechheimer, C., Kulp, A. and Kuehn, M.J. (2014) Modulation of Bacterial Outer Membrane Vesicle Production by Envelope Structure and Content. BMC Microbiology, 14, Article No. 324. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Schwechheimer, C., Rodriguez, D.L. and Kuehn, M.J. (2015) NlpI-Mediated Modulation of Outer Membrane Vesicle Production through Peptidoglycan Dynamics in Escherichia coli. Microbiologyopen, 4, 375-389. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Hua, L., Kaiser, M., Carabadjac, I., et al. (2023) Vesicle Budding Caused by Lysolipid-Induced Asymmetry Stress. Biophysical Journal, 122, 4011-4022. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
May, K.L. and Silhavy, T.J. (2018) The Escherichia coli Phospholipase PldA Regulates Outer Membrane Homeostasis via Lipid Signaling. MBio, 9, E00379-18. [Google Scholar] [CrossRef]
|
|
[38]
|
Bonnington, K.E. and Kuehn, M.J. (2016) Outer Membrane Vesicle Production Facilitates LPS Remodeling and Outer Membrane Maintenance in Salmonella during Environmental Transitions. MBio, 7, E01532-16. [Google Scholar] [CrossRef]
|
|
[39]
|
Gui, M.J., Dashper, S.G., Slakeski, N., et al. (2016) Spheres of Influence: Porphyromonas gingivalis Outer Membrane Vesicles. Molecular Oral Microbiology, 31, 365-378. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Reidl, J. (2016) Outer Membrane Vesicle Biosynthesis in Salmonella: Is There More to Gram-Negative Bacteria? MBio, 7, E01282-16. [Google Scholar] [CrossRef]
|
|
[41]
|
Murphy, K., Park, A.J., Hao, Y., et al. (2014) Influence of O Polysaccharides on Biofilm Development and Outer Membrane Vesicle Biogenesis in Pseudomonas aeruginosa PAO1. Journal of Bacteriology, 196, 1306-1317. [Google Scholar] [CrossRef]
|
|
[42]
|
Orench-Rivera, N. and Kuehn, M.J. (2016) Environmentally Controlled Bacterial Vesicle-Mediated Export. Cellular Microbiology, 18, 1525-1536. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Bauwens, A., Kunsmann, L., Karch, H., et al. (2017) Antibiotic-Mediated Modulations of Outer Membrane Vesicles in Enterohemorrhagic Escherichia coli O104:H4 and O157:H7. Antimicrobial Agents and Chemotherapy, 61, E00937-17. [Google Scholar] [CrossRef]
|
|
[44]
|
Kulkarni, H.M., Nagaraj, R. and Jagannadham, M.V. (2015) Protective Role of E. coli Outer Membrane Vesicles against Antibiotics. Microbiological Research, 181, 1-7. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
McMahon, K.J., Castelli, M.E., García Vescovi, E., et al. (2012) Biogenesis of Outer Membrane Vesicles in Serratia marcescens Is Thermoregulated and Can Be Induced by Activation of the Rcs Phosphorelay System. Journal of Bacteriology, 194, 3241-3249. [Google Scholar] [CrossRef]
|
|
[46]
|
Toyofuku, M., Zhou, S., Sawada, I., et al. (2014) Membrane Vesicle Formation Is Associated with Pyocin Production under Denitrifying Conditions in Pseudomonas aeruginosa PAO1. Environmental Microbiology, 16, 2927-2938. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Sampath, V., McCaig, W.D. and Thanassi, D.G. (2018) Amino Acid Deprivation and Central Carbon Metabolism Regulate the Production of Outer Membrane Vesicles and Tubes by Francisella. Molecular Microbiology, 107, 523-541. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Yonezawa, H., Osaki, T., Kurata, S., et al. (2009) Outer Membrane Vesicles of Helicobacter pylori TK1402 Are Involved in Biofilm Formation. BMC Microbiology, 9, Article No. 197. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Wu, Y. and Seyedsayamdost, M.R. (2017) Synergy and Target Promiscuity Drive Structural Divergence in Bacterial Alkylquinolone Biosynthesis. Cell Chemical Biology, 24, 1437-1444.E3. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Ma, G., Ding, Y., Wu, Q., et al. (2022) Yersinia enterocolitica-Derived Outer Membrane Vesicles Inhibit Initial Stage of Biofilm Formation. Microorganisms, 10, Article No. 2357. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Vanaja, S.K., Russo, A.J., Behl, B., et al. (2016) Bacterial Outer Membrane Vesicles Mediate Cytosolic Localization of LPS and Caspase-11 Activation. Cell, 165, 1106-1119. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Behrouzi, A., Mazaheri, H., Falsafi, S., et al. (2020) Intestinal Effect of the Probiotic Escherichia coli Strain Nissle 1917 and Its OMV. Journal of Diabetes & Metabolic Disorders, 19, 597-604. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Gao, F., Xu, L., Yang, B., et al. (2019) Kill the Real with the Fake: Eliminate Intracellular Staphylococcus aureus Using Nanoparticle Coated with Its Extracellular Vesicle Membrane as Active-Targeting Drug Carrier. ACS Infectious Diseases, 5, 218-227. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Fulsundar, S., Harms, K., Flaten, G.E., et al. (2014) Gene Transfer Potential of Outer Membrane Vesicles of Acinetobacter baylyi and Effects of Stress on Vesiculation. Applied and Environmental Microbiology, 80, 3469-3483. [Google Scholar] [CrossRef]
|
|
[55]
|
Furuta, N., Takeuchi, H. and Amano, A. (2009) Entry of Porphyromonas gingivalis Outer Membrane Vesicles into Epithelial Cells Causes Cellular Functional Impairment. Infection and Immunity, 77, 4761-4770. [Google Scholar] [CrossRef]
|
|
[56]
|
Elluri, S., Enow, C., Vdovikova, S., et al. (2014) Outer Membrane Vesicles Mediate Transport of Biologically Active Vibrio cholerae Cytolysin (VCC) from V. cholerae Strains. PLOS ONE, 9, e106731. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Koeppen, K., Hampton, T.H., Jarek, M., et al. (2016) A Novel Mechanism of Host-Pathogen Interaction through SRNA in Bacterial Outer Membrane Vesicles. PLOS Pathogens, 12, e1005672. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Aldick, T., Bielaszewska, M., Uhlin, B.E., et al. (2009) Vesicular Stabilization and Activity Augmentation of Enterohaemorrhagic Escherichia coli Haemolysin. Molecular Microbiology, 71, 1496-1508. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Kim, S.W., Park, S.B., Im, S.P., et al. (2018) Outer Membrane Vesicles from β-Lactam-Resistant Escherichia coli Enable the Survival of β-Lactam-Susceptible E. coli in the Presence of β-Lactam Antibiotics. Scientific Reports, 8, Article No. 5402. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Whitworth, D.E. (2011) Myxobacterial Vesicles Death at a Distance? Advances in Applied Microbiology, 75, 1-31. [Google Scholar] [CrossRef]
|
|
[61]
|
Manning, A.J. and Kuehn, M.J. (2011) Contribution of Bacterial Outer Membrane Vesicles to Innate Bacterial Defense. BMC Microbiology, 11, Article No. 258. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Reyes-Robles, T., Dillard, R.S., Cairns, L.S., et al. (2018) Vibrio cholerae Outer Membrane Vesicles Inhibit Bacteriophage Infection. Journal of Bacteriology, 200, E00792-17. [Google Scholar] [CrossRef]
|
|
[63]
|
Wang, Y., Hoffmann, J.P., Chou, C.W., et al. (2020) Burkholderia thailandensis Outer Membrane Vesicles Exert Antimicrobial Activity against Drug-Resistant and Competitor Microbial Species. Journal of Microbiology, 58, 550-562. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
MacDonald, K.L. and Beveridge, T.J. (2002) Bactericidal Effect of Gentamicin-Induced Membrane Vesicles Derived from Pseudomonas aeruginosa PAO1 on Gram-Positive Bacteria. Canadian Journal of Microbiology, 48, 810-820. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
MacDonald, I.A. and Kuehn, M.J. (2012) Offense and Defense: Microbial Membrane Vesicles Play both Ways. Research in Microbiology, 163, 607-618. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Lappann, M., Otto, A., Becher, D., et al. (2013) Comparative Proteome Analysis of Spontaneous Outer Membrane Vesicles and Purified Outer Membranes of Neisseria meningitidis. Journal of Bacteriology, 195, 4425-4435. [Google Scholar] [CrossRef]
|
|
[67]
|
Li, Y., Zhao, R., Cheng, K., et al. (2020) Bacterial Outer Membrane Vesicles Presenting Programmed Death 1 for Improved Cancer Immunotherapy via Immune Activation and Checkpoint Inhibition. ACS Nano, 14, 16698-16711. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Chen, Q., Huang, G., Wu, W., et al. (2020) A Hybrid Eukaryotic-Prokaryotic Nanoplatform with Photothermal Modality for Enhanced Antitumor Vaccination. Advanced Materials, 32, e1908185. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Chen, Q., Bai, H., Wu, W., et al. (2020) Bioengineering Bacterial Vesicle-Coated Polymeric Nanomedicine for Enhanced Cancer Immunotherapy and Metastasis Prevention. Nano Letters, 20, 11-21. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Zhuang, Q., Xu, J., Deng, D., et al. (2021) Bacteria-Derived Membrane Vesicles to Advance Targeted Photothermal Tumor Ablation. Biomaterials, 268, Article ID: 120550. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Chen, M.H., Liu, T.Y., Chen, Y.C., et al. (2021) Combining Augmented Radiotherapy and Immunotherapy through a Nano-Gold and Bacterial Outer-Membrane Vesicle Complex for the Treatment of Glioblastoma. Nanomaterials (Basel), 11, Article No. 1661. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Kuerban, K., Gao, X., Zhang, H., et al. (2020) Doxorubicin-Loaded Bacterial Outer-Membrane Vesicles Exert Enhanced Anti-Tumor Efficacy in Non-Small-Cell Lung Cancer. Acta Pharmaceutica Sinica B, 10, 1534-1548. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Li, Y., Wu, J., Qiu, X., et al. (2022) Bacterial Outer Membrane Vesicles-Based Therapeutic Platform Eradicates Triple-Negative Breast Tumor by Combinational Photodynamic/Chemo-/Immunotherapy. Bioactive Materials, 20, 548-560. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Liu, X.Z., Wen, Z.J., Li, Y.M., et al. (2023) Bioengineered Bacterial Membrane Vesicles with Multifunctional Nanoparticles as a Versatile Platform for Cancer Immunotherapy. ACS Applied Materials & Interfaces, 15, 3744-3759. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Shi, J., Ma, Z., Pan, H., et al. (2020) Biofilm-Encapsulated Nano Drug Delivery System for the Treatment of Colon Cancer. Journal of Microencapsulation, 37, 481-491. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Cui, C., He, Q., Wang, J., et al. (2023) Targeted MiR-34a Delivery with PD1 Displayed Bacterial Outer Membrane Vesicles-Coated Zeolitic Imidazolate Framework Nanoparticles for Enhanced Tumor Therapy. International Journal of Biological Macromolecules, 247, Article ID: 125692. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Guo, Q., Li, X., Zhou, W., et al. (2021) Sequentially Triggered Bacterial Outer Membrane Vesicles for Macrophage Metabolism Modulation and Tumor Metastasis Suppression. ACS Nano, 15, 13826-13838. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Wang, S., Huang, W., Li, K., et al. (2017) Engineered Outer Membrane Vesicle Is Potent to Elicit HPV16E7-Specific Cellular Immunity in a Mouse Model of TC-1 Graft Tumor. International Journal of Nanomedicine, 12, 6813-6825. [Google Scholar] [CrossRef]
|
|
[79]
|
Huang, W., Shu, C., Hua, L., et al. (2020) Modified Bacterial Outer Membrane Vesicles Induce Autoantibodies for Tumor Therapy. Acta Biomaterialia, 108, 300-312. [Google Scholar] [CrossRef] [PubMed]
|
|
[80]
|
Grandi, A., Tomasi, M., Zanella, I., et al. (2017) Synergistic Protective Activity of Tumor-Specific Epitopes Engineered in Bacterial Outer Membrane Vesicles. Frontiers in Oncology, 7, Article No. 253. [Google Scholar] [CrossRef] [PubMed]
|
|
[81]
|
Cheng, K., Zhao, R., Li, Y., et al. (2021) Bioengineered Bacteria-Derived Outer Membrane Vesicles as a Versatile Antigen Display Platform for Tumor Vaccination via Plug-and-Display Technology. Nature Communications, 12, Article No. 2041. [Google Scholar] [CrossRef] [PubMed]
|
|
[82]
|
Yue, Y., Xu, J., Li, Y., et al. (2022) Antigen-Bearing Outer Membrane Vesicles as Tumour Vaccines Produced in Situ by Ingested Genetically Engineered Bacteria. Nature Biomedical Engineering, 6, 898-909. [Google Scholar] [CrossRef] [PubMed]
|
|
[83]
|
Zou, M.Z., Li, Z.H., Bai, X.F., et al. (2021) Hybrid Vesicles Based on Autologous Tumor Cell Membrane and Bacterial Outer Membrane to Enhance Innate Immune Response and Personalized Tumor Immunotherapy. Nano Letters, 21, 8609-8618. [Google Scholar] [CrossRef] [PubMed]
|
|
[84]
|
Chen, L., Qin, H., Zhao, R., et al. (2021) Bacterial Cytoplasmic Membranes Synergistically Enhance the Antitumor Activity of Autologous Cancer Vaccines. Science Translational Medicine, 13, Eabc2816. [Google Scholar] [CrossRef] [PubMed]
|
|
[85]
|
Hu, T., Wolfram, J. and Srivastava, S. (2021) Extracellular Vesicles in Cancer Detection: Hopes and Hypes. Trends Cancer, 7, 122-133. [Google Scholar] [CrossRef] [PubMed]
|
|
[86]
|
Gujrati, V., Prakash, J., Malekzadeh-Najafabadi, J., et al. (2019) Bioengineered Bacterial Vesicles as Biological Nano-Heaters for Optoacoustic Imaging. Nature Communications, 10, Article No. 1114. [Google Scholar] [CrossRef] [PubMed]
|
|
[87]
|
Chen, Q., Rozovsky, S. and Chen, W. (2017) Engineering Multi-Functional Bacterial Outer Membrane Vesicles as Modular Nanodevices for Biosensing and Bioimaging. Chemical Communications (Camb), 53, 7569-7572. [Google Scholar] [CrossRef]
|