|
[1]
|
Cordonnier, C., Demchuk, A., Ziai, W., et al. (2018) Intracerebral Haemorrhage: Current Approaches to Acute Management. The Lancet, 392, 1257-1268. [Google Scholar] [CrossRef]
|
|
[2]
|
Van Asch, C.J., Luitse, M.J., Rinkel, G.J., et al. (2010) Incidence, Case Fatality, and Functional Outcome of Intracerebral Haemorrhage over Time, According to Age, Sex, and Ethnic Origin: A Systematic Review and Meta-Analysis. The Lancet Neurology, 9, 167-176. [Google Scholar] [CrossRef]
|
|
[3]
|
Adelborg, K., Szepligeti, S., Sundboll, J., et al. (2017) Risk of Stroke in Patients with Heart Failure: A Population-Based 30-Year Cohort Study. Stroke, 48, 1161-1168. [Google Scholar] [CrossRef]
|
|
[4]
|
Chen, Z., Venkat, P., Seyfried, D., et al. (2017) Brain-Heart Interaction: Cardiac Complications after Stroke. Circulation Research, 121, 451-468. [Google Scholar] [CrossRef]
|
|
[5]
|
Wartenberg, K.E. and Mayer, S.A. (2006) Medical Complications after Subarachnoid Hemorrhage: New Strategies for Prevention and Management. Current Opinion in Critical Care, 12, 78-84. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Byer, E., Ashman, R. and Toth, L.A. (1947) Electrocardiograms with Large, Upright T Waves and Long Q-T Intervals. Journal of the American Heart Association, 33, 796-806. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Mierzewska-Schmidt, M. and Gawecka, A. (2015) Neurogenic Stunned Myocardium—Do We Consider This Diagnosis in Patients with Acute Central Nervous System Injury and Acute Heart Failure? Anaesthesiology Intensive Therapy, 47, 175-180. [Google Scholar] [CrossRef]
|
|
[8]
|
吴卫娟, 孟然. 脑梗死并发脑心综合征的研究进展[J]. 中华临床医师杂志, 2017, 11(1): 91-94.
|
|
[9]
|
Cruz, J.C., Flor, A.F., et al. (2015) Reactive Oxygen Species in the Paraventricular Nucleus of the Hypothalamus Alter Sympathetic Activity during Metabolic Syndrome. Frontiers in Physiology, 6, Article No. 384. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Mancia, G. and Grassi, G. (2014) The Autonomic Nervous System and Hypertension. Circulation Research, 114, 1804-1814. [Google Scholar] [CrossRef]
|
|
[11]
|
Mazzeo, A.T., Micalizzi, A., Mascia, L., et al. (2014) Brain-Heart Crosstalk: the Many Faces of Stress-Related Cardiomyopathy Syndromes in Anaesthesia and Intensive Care. British Journal of Anaesthesia, 112, 803-815. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Liaudet, L., Calderari, B. and Pacher, P. (2014) Pathophysiological Mechanisms of Catecholamine and Cocaine-Mediated Cardiotoxicity. Heart Failure Reviews, 19, 815-824. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Bencivenga, L., Liccardo, D., Napolitano, C., et al. (2019) Betaadrenergic Receptor Signaling and Heart Failure: From Bench to Bedside. Heart Failure Clinics, 15, 409-419. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Xu, S., Wang, P., Zhang, H., et al. (2016) CaMKII Induces Permeability Transition through Drp1 Phosphorylation during Chronic β-AR Stimulation. Nature Communications, 7, Article No. 13189. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Borovikova, L.V., Ivanova, S., Zhang, M., et al. (2000) Vagus Nerve Stimulation Attenuates the Systemic Inflammatory Response to Endotoxin. Nature, 405, 458-462. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Rosas-Ballina, M., Olofsson, P.S., Ochani, M., et al. (2011) Acetylcholine-Synthesizing T Cells Relay Neural Signals in a Vagus Nerve Circuit. Science, 334, 98-101. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Goverse, G., Stakenborg, M. and Matteoli, G. (2016) The Intestinal Cholinergic Anti-Inflammatory Pathway. The Journal of Physiology, 594, 5771-5780. [Google Scholar] [CrossRef]
|
|
[18]
|
Su, Y., Zhang, W., Zhang, R., et al. (2022) Activation of Cholinergic Anti-Inflammatory Pathway Ameliorates Cerebral and Cardiac Dysfunction after Intracerebral Hemorrhage through Autophagy. Frontiers in Immunology, 13, Article ID: 870174. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Israel, M. and Dunant, Y. (1998) Acetylcholine Release. Reconstitution of the Elementary Quantal Mechanism. Journal of Physiology, 92, 123-128. [Google Scholar] [CrossRef]
|
|
[20]
|
Yamada, T., Inazu, M.T., Ajima, H., et al. (2011) Functional Expression of Choline Transporter-Like Protein 1 (CTL1) in Human Neuroblastoma Cells and Its Link to Acetylcholine Synthesis. Neurochemistry International, 58, 354-365. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Gotti, C., Clementi, F., Fornari, A., et al. (2009) Structural and Functional Diversity of Native Brain Neuronal Nicotinic Receptors. Biochemical Pharmacology, 78, 703-711. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Pavlov, V.A., Ochani, M., Gallowitsch-Puerta, M., et al. (2006) Central Muscarinic Cholinergic Regulation of the Systemic Inflammatory Response during Endotoxemia. Proceedings of the National Academy of Sciences of the United States of America, 103, 5219-5223. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Wang, H., Yu, M., Ochani, M., et al. (2003) Nicotinic Acetylcholine Receptor Alpha7 Subunit Is an Essential Regulator of Inflammation. Nature, 421, 384-388. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
St-Pierre, S., Jiang, W., Roy, P., et al. (2016) Nicotinic Acetylcholine Receptors Modulate Bone Marrow-Derived Pro-Inflammatory Monocyte Production and Survival. PLOS ONE, 11, e0150230. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Koval, L., Lykhmus, O., Zhmak, M., et al. (2011) Differential Involvement of α4β2, α7 and α9α10 Nicotinic Acetylcholine Receptors in B Lymphocyte Activation in Vitro. The International Journal of Biochemistry & Cell Biology, 43, 516-524. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Burch, G.E., Meyers, R. and Abildskov, J.A. (1954) Graphic Pattern Observed in Cerebrovascular Accidents. Circulation, 9, 719-723. [Google Scholar] [CrossRef]
|
|
[27]
|
Banki, N., Kopelnik, A., Tung, P., et al. (2006) Prospective Analysis of Prevalence, Distribution, and Rate of Recovery of Left Ventricular Systolic Dysfunction in Patients with Subarachnoid Hemorrhage. Journal of Neurosurgery, 105, 15-20. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Andreoli, A., Di Pasquale, G., Pinelli, G., et al. (1987) Subarachnoid Hemorrhage: Frequency and Severity of Cardiac Arrhythmias. Stroke, 18, 558-564. [Google Scholar] [CrossRef]
|
|
[29]
|
Cheung, R.T. and Hachinski, V. (2004) Cardiac Effects of Stroke. Current Treatment Options in Cardiovascular Medicine, 6, 199-207. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Zaroff, J.G., Rordorf, G.A. and Ogilvy, C.S. (2000) Regional Patterns of Left Ventricular Systolic Dysfunction after Subarachnoid Hemorrhage: Evidence for Neurally Mediated Cardiac Injury. Journal of the American Society of Echocardiography, 13, 774-779. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Zhang, L., Wuri, J., An, L., et al. (2021) Metoprolol Attenuates Intracerebral Hemorrhage-Induced Cardiac Damage By Suppression of Sympathetic Overactivity in Mice. Autonomic Neuroscience, 234, Article ID: 102832. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Bybee, K.A. and Prasad, A. (2008) Stress-Related Cardiomyopathy Syndromes. Circulation, 118, Article ID: 397409. [Google Scholar] [CrossRef]
|