| [1] | Paul, S. and Candelario-Jalil, E. (2021) Emerging Neuroprotective Strategies for the Treatment of Ischemic Stroke: An Overview of Clinical and Preclinical Studies. Experimental Neurology, 335, Article ID: 113518. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [2] | Sarmah, D., Agrawal, V., Rane, P., Bhute, S., Watanabe, M., Kalia, K., Ghosh, Z., Dave, K.R., Yavagal, D.R. and Bhattacharya, P. (2018) Mesenchymal Stem Cell Therapy in Ischemic Stroke: A Meta-Analysis of Preclinical Studies. Clinical Pharmacology and Therapeutics, 103, 990-998. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [3] | Schmidt, A. and Minnerup, J. (2016) Promoting Recovery from Ischemic Stroke. Expert Review of Neurotherapeutics, 16, 173-186. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [4] | Tanaka, Y., Tanaka, R., Liu, M., Hattori, N. and Urabe, T. (2010) Cilostazol Attenuates Ischemic Brain Injury and Enhances Neurogenesis in the Subventricular Zone of Adult Mice after Transient Focal Cerebral Ischemia. Neuroscience, 171, 1367-1376. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [5] | Fisch, U., Brégère, C., Geier, F., Chicha, L. and Guzman, R. (2020) Neonatal Hypoxia-Ischemia in Rat Elicits a Region-Specific Neurotrophic Response in SVZ Microglia. Journal of Neuroinflammation, 17, Article No. 26. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [6] | Haupt, M., Gerner, S.T., Bahr, M. and Doeppner, T.R. (2023) Neuroprotective Strategies for Ischemic Stroke-Future Perspectives. International Journal of Molecular Sciences, 24, Article No. 4334. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [7] | Kim, H., Kong, C.S. and Seo, Y. (2022) Salidroside, 8(E)-Nuezhenide, and Ligustroside from Ligustrum japonicum Fructus Inhibit Expressions of MMP-2 and-9 in HT 1080 Fibrosarcoma. International Journal of Molecular Sciences, 23, Article No. 2660. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [8] | Jiang, Y., Mao, S., Huang, W., Lu, B., Cai, Z., Zhou, F., Li, M., Lou, T. and Zhao, Y. (2016) Phenylethanoid Glycoside Profiles and Antioxidant Activities of Osmanthus fragrans Lour. Flowers by UPLC/PDA/MS and Simulated Digestion Model. Journal of Agricultural and Food Chemistry, 64, 2459-2466. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [9] | Agbo, M.O., Odimegwu, D.C., Okoye, F.B.C. and Osadebe, P.O. (2017) Antiviral Activity of Salidroside from the Leaves of Nigerian Mistletoe (Loranthus micranthus Linn) Parasitic on Hevea brasiliensis against Respiratory Syncytial Virus. Pakistan Journal of Pharmaceutical Sciences, 30, 1251-1256. | 
                     
                                
                                    
                                        | [10] | Tian, X., Huang, Y., Zhang, X., Fang, R., Feng, Y., Zhang, W., Li, L. and Li, T. (2022) Salidroside Attenuates Myocardial Ischemia/Reperfusion Injury via AMPK-Induced Suppression of Endoplasmic Reticulum Stress and Mitochondrial Fission. Toxicology and Applied Pharmacology, 448, Article ID: 116093. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [11] | Jiang, S., Fan, F., Yang, L., Chen, K., Sun, Z., Zhang, Y., Cairang, N., Wang, X. and Meng, X. (2022) Salidroside Attenuates High Altitude Hypobaric Hypoxia-Induced Brain Injury in Mice via Inhibiting NF-KappaB/NLRP3 Pathway. European Journal of Pharmacology, 925, Article ID: 175015. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [12] | Luan, X., Cui, C., Jiang, J., Wang, C., Li, L., Li, H., Xu, C., Li, L., Chi, Y. and Yan, G. (2022) Salidroside Mitigates Airway Inflammation in Asthmatic Mice via the AMPK/Akt/GSK3beta Signaling Pathway. International Archives of Allergy and Immunology, 183, 326-336. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [13] | Yao, F., Jiang, X., Qiu, L., Peng, Z., Zheng, W., Ding, L. and Xia, X. (2022) Long-Term Oral Administration of Salidroside Alleviates Diabetic Retinopathy in Db/Db Mice. Frontiers in Endocrinology, 13, Article ID: 861452. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [14] | Han, J., Zhang, J.Z., Zhong, Z.F., Li, Z.F., Pang, W.S., Hu, J. and Chen, L.D. (2018) Gualou Guizhi Decoction Promotes Neurological Functional Recovery and Neurogenesis Following Focal Cerebral Ischemia/Reperfusion. Neural Regeneration Research, 13, 1408-1416. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [15] | Lai, W., Zheng, Z., Zhang, X., Wei, Y., Chu, K., Brown, J., Hong, G. and Chen, L. (2015) Salidroside-Mediated Neuroprotection Is Associated with Induction of Early Growth Response Genes (EGRS) across a Wide Therapeutic Window. Neurotoxicity Research, 28, 108-121. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [16] | Wei, Y., Hong, H., Zhang, X., Lai, W., Wang, Y., Chu, K., Brown, J., Hong, G. and Chen, L. (2017) Salidroside Inhibits Inflammation through PI3K/Akt/HIF Signaling after Focal Cerebral Ischemia in Rats. Inflammation, 40, 1297-1309. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [17] | Hu, H., Li, Z., Zhu, X., Lin, R. and Chen, L. (2014) Salidroside Reduces Cell Mobility via NF-KappaB and MAPK Signaling in LPS-Induced BV2 Microglial Cells. Evidence-Based Complementary and Alternative Medicine: ECAM, 2014, Article ID: 383821. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [18] | Lai, W., Xie, X., Zhang, X., Wang, Y., Chu, K., Brown, J., Chen, L. and Hong, G. (2018) Inhibition of Complement Drives Increase in Early Growth Response Proteins and Neuroprotection Mediated by Salidroside after Cerebral Ischemia. Inflammation, 41, 449-463. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [19] | Liu, X., Wen, S., Yan, F., Liu, K., Liu, L., Wang, L., Zhao, S. and Ji, X. (2018) Salidroside Provides Neuroprotection by Modulating Microglial Polarization after Cerebral Ischemia. Journal of Neuroinflammation, 15, Article No. 39. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [20] | Wang, Y., Su, Y., Lai, W., Huang, X., Chu, K., Brown, J. and Hong, G. (2020) Salidroside Restores an Anti-Inflammatory Endothelial Phenotype by Selectively Inhibiting Endothelial Complement after Oxidative Stress. Inflammation, 43, 310-325. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [21] | Han, J., Xiao, Q., Lin, Y.H., Zheng, Z.Z., He, Z.D., Hu, J. and Chen, L.D. (2015) Neuroprotective Effects of Salidroside on Focal Cerebral Ischemia/Reperfusion Injury Involve the Nuclear Erythroid 2-Related Factor 2 Pathway. Neural Regeneration Research, 10, 1989-1996. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [22] | Zhong, Z.F., Han, J., Zhang, J.Z., Xiao, Q., Chen, J.Y., Zhang, K., Hu, J. and Chen, L.D. (2019) Neuroprotective Effects of Salidroside on Cerebral Ischemia/Reperfusion-Induced Behavioral Impairment Involves the Dopaminergic System. Frontiers in Pharmacology, 10, Article No. 1433. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [23] | Qu, Z.Q., Zhou, Y., Zeng, Y.S., Lin, Y.K., Li, Y., Zhong, Z.Q. and Chan, W.Y. (2012) Protective Effects of a Rhodiola Crenulata Extract and Salidroside on Hippocampal Neurogenesis against Streptozotocin-Induced Neural Injury in the Rat. PLOS ONE, 7, E29641. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [24] | Ha, X.Q., Yang, B., Hou, H.J., Cai, X.L., Xiong, W.Y. and Wei, X.P. (2020) Protective Effect of Rhodioloside and Bone Marrow Mesenchymal Stem Cells Infected with HIF-1-Expressing Adenovirus on Acute Spinal Cord Injury. Neural Regeneration Research, 15, 690-696. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [25] | Zhao, H.B., Ma, H., Ha, X.Q., Zheng, P., Li, X.Y., Zhang, M., Dong, J.Z. and Yang, Y.S. (2014) Salidroside Induces Rat Mesenchymal Stem Cells to Differentiate into Dopaminergic Neurons. Cell Biology International, 38, 462-471. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [26] | Yan, R., Xu, H. and Fu, X. (2018) Salidroside Protects Hypoxia-Induced Injury by Up-Regulation of MiR-210 in Rat Neural Stem Cells. Biomedicine & Pharmacotherapy, 103, 1490-1497. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [27] | Zuo, W., Yan, F., Zhang, B., Hu, X. and Mei, D. (2018) Salidroside Improves Brain Ischemic Injury by Activating PI3K/Akt Pathway and Reduces Complications Induced by Delayed TPA Treatment. European Journal of Pharmacology, 830, 128-138. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [28] | Chen, T., Ma, Z., Zhu, L., Jiang, W., Wei, T., Zhou, R., Luo, F., Zhang, K., Fu, Q., Ma, C., et al. (2016) Suppressing Receptor-Interacting Protein 140: A New Sight for Salidroside to Treat Cerebral Ischemia. Molecular Neurobiology, 53, 6240-6250. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [29] | Coviello, S., Gramuntell, Y., Klimczak, P., Varea, E., Blasco-Ibanez, J.M., Crespo, C., Gutierrez, A. and Nacher, J. (2022) Phenotype and Distribution of Immature Neurons in the Human Cerebral Cortex Layer II. Frontiers in Neuroanatomy, 16, Article ID: 851432. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [30] | Yu, B., Yao, Y., Zhang, X., Ruan, M., Zhang, Z., Xu, L., Liang, T. and Lu, J. (2021) Synergic Neuroprotection between Ligusticum Chuanxiong Hort and Borneol against Ischemic Stroke by Neurogenesis via Modulating Reactive Astrogliosis and Maintaining the Blood-Brain Barrier. Frontiers in Pharmacology, 12, Article ID: 666790. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [31] | Ding, Z.B., Song, L.J., Wang, Q., Kumar, G., Yan, Y.Q. and Ma, C.G. (2021) Astrocytes: A Double-Edged Sword in Neurodegenerative Diseases. Neural Regeneration Research, 16, 1702-1710. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [32] | Liu, Z., Li, Y., Cui, Y., Roberts, C., Lu, M., Wilhelmsson, U., Pekny, M. and Chopp, M. (2014) Beneficial Effects of Gfap/Vimentin Reactive Astrocytes for Axonal Remodeling and Motor Behavioral Recovery in Mice after Stroke. Glia, 62, 2022-2033. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [33] | Shen, S.W., Duan, C.L., Chen, X.H., Wang, Y.Q., Sun, X., Zhang, Q.W., Cui, H.R. and Sun, F.Y. (2016) Neurogenic Effect of VEGF Is Related to Increase of Astrocytes Transdifferentiation into New Mature Neurons in Rat Brains after Stroke. Neuropharmacology, 108, 451-461. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [34] | Duan, C.L., Liu, C.W., Shen, S.W., Yu, Z., Mo, J.L., Chen, X.H. and Sun, F.Y. (2015) Striatal Astrocytes Transdifferentiate into Functional Mature Neurons Following Ischemic Brain Injury. Glia, 63, 1660-1670. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [35] | Ge, L.J., Yang, F.H., Li, W., Wang, T., Lin, Y., Feng, J., Chen, N.H., Jiang, M., Wang, J.H., Hu, X.T., et al. (2020) In Vivo Neuroregeneration to Treat Ischemic Stroke through NeuroD1 AAV-Based Gene Therapy in Adult Non-Human Primates. Frontiers in Cell and Developmental Biology, 8, Article ID: 590008. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [36] | Xiong, L.L., Chen, J., Du, R.L., Liu, J., Chen, Y.J., Hawwas, M.A., Zhou, X.F., Wang, T.H., Yang, S.J. and Bai, X. (2021) Brain-Derived Neurotrophic Factor and Its Related Enzymes and Receptors Play Important Roles after Hypoxic-Ischemic Brain Damage. Neural Regeneration Research, 16, 1453-1459. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [37] | Casas, S., Perez, A.F., Mattiazzi, M., Lopez, J., Folgueira, A., Gargiulo-Monachelli, G.M., Gonzalez Deniselle, M.C. and De Nicola, A.F. (2017) Potential Biomarkers with Plasma Cortisol, Brain-Derived Neurotrophic Factor and Nitrites in Patients with Acute Ischemic Stroke. Current Neurovascular Research, 14, 338-346. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [38] | Yu, K.W., Wang, C.J., Wu, Y., Wang, Y.Y., Wang, N.H., Kuang, S.Y., Liu, G., Xie, H.Y., Jiang, C.Y. and Wu, J.F. (2020) An Enriched Environment Increases the Expression of Fibronectin Type III Domain-Containing Protein 5 and Brain-Derived Neurotrophic Factor in the Cerebral Cortex of the Ischemic Mouse Brain. Neural Regeneration Research, 15, 1671-1677. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [39] | Gao, Y., Ya, B., Li, X., Guo, Y. and Yin, H. (2021) Myricitrin Ameliorates Cognitive Deficits in MCAO Cerebral Stroke Rats via Histone Acetylation-Induced Alterations of Brain-Derived Neurotrophic Factor. Molecular and Cellular Biochemistry, 476, 609-617. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [40] | Li, C., Sun, T. and Jiang, C. (2021) Recent Advances in Nanomedicines for the Treatment of Ischemic Stroke. Acta Pharmaceutica Sinica B, 11, 1767-1788. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [41] | Yang, J., Wu, S., Hou, L., Zhu, D., Yin, S., Yang, G. and Wang, Y. (2020) Therapeutic Effects of Simultaneous Delivery of Nerve Growth Factor MRNA and Protein via Exosomes on Cerebral Ischemia. Molecular Therapy Nucleic Acids, 21, 512-522. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [42] | Cragnolini, A.B., Montenegro, G., Friedman, W.J. and Masco, D.H. (2018) Brain-Region Specific Responses of Astrocytes to an in Vitro Injury and Neurotrophins. Molecular and Cellular Neurosciences, 88, 240-248. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [43] | Zhang, X., Du, Q., Yang, Y., Wang, J., Liu, Y., Zhao, Z., Zhu, Y. and Liu, C. (2018) Salidroside Alleviates Ischemic Brain Injury in Mice with Ischemic Stroke through Regulating BDNK Mediated PI3K/Akt Pathway. Biochemical Pharmacology, 156, 99-108. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [44] | Chai, Y., Cai, Y., Fu, Y., Wang, Y., Zhang, Y., Zhang, X., Zhu, L., Miao, M. and Yan, T. (2022) Salidroside Ameliorates Depression by Suppressing NLRP3-Mediated Pyroptosis via P2X7/NF-KappaB/NLRP3 Signaling Pathway. Frontiers in Pharmacology, 13, Article ID: 812362. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [45] | Liu, H., Lv, P., Zhu, Y., Wu, H., Zhang, K., Xu, F., Zheng, L. and Zhao, J. (2017) Salidroside Promotes Peripheral Nerve Regeneration Based on Tissue Engineering Strategy Using Schwann Cells and PLGA: In Vitro and in Vivo. Scientific Reports, 7, Article No. 39869. [Google Scholar] [CrossRef] [PubMed] | 
                     
                                
                                    
                                        | [46] | Li, J., Zhang, Y., Yang, Z., Zhang, J., Lin, R. and Luo, D. (2020) Salidroside Promotes Sciatic Nerve Regeneration Following Combined Application Epimysium Conduit and Schwann Cells in Rats. Experimental Biology and Medicine, 245, 522-531. [Google Scholar] [CrossRef] [PubMed] |