|
[1]
|
Kidney Disease: Improving Global Outcomes (KDIGO) Glomerular Diseases Work Group (2021) KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases. Kidney International, 100, S1-S276.
|
|
[2]
|
Floege, J. and Barratt, J. (2021) IgA Nephropathy: A Perspective for 2021. Seminars in Immunopathology, 43, 625-626. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Perse, M. and Veceric-Haler, Z. (2019) The Role of IgA in the Pathogenesis of IgA Nephropathy. International Journal of Molecular Sciences, 20, Article 6199. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Coppo, R. (2019) Towards a Personalized Treatment for IgA Nephropathy Considering Pathology and Pathogenesis. Nephrology Dialysis Transplantation, 34, 1832-1838. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Pillebout, E. and Sunderkotter, C. (2021) IgA Vasculitis. Seminars in Immunopathology, 43, 729-738. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Trimarchi, H., Barratt, J., Cattran, D.C., Cook, H.T., Coppo, R., Haas, M., Liu, Z.-H., Roberts, I.S., Yuzawa, Y., Zhang, H. and Feehally, J. (2017) Oxford Classification of IgA Nephropathy 2016: An Update from the IgA Nephropathy Classification Working Group. Kidney International, 91, 1014-1021. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Roberts, I.S.D. (2014) Pathology of IgA Nephropathy. Nature Reviews Nephrology, 10, 445-454. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Maixnerova, D., Reily, C., Bian, Q., Neprasova, M., Novak, J. and Tesar, V. (2016) Markers for the Progression of IgA Nephropathy. Journal of Nephrology, 29, 535-541. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Moresco, R.N., Speeckaert, M.M. and Delanghe, J.R. (2015) Diagnosis and Monitoring of IgA Nephropathy: The Role of Biomarkers as an Alternative to Renal Biopsy. Autoimmunity Reviews, 14, 847-853. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Stamellou, E., Seikrit, C., Tang, S.C.W., Boor, P., Tesar, V., Floege, J., Barratt, J. and Kramann, R. (2023) IgA Nephropathy. Nature Reviews Disease Primers, 9, Article No. 67. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Suzuki, H. and Novak, J. (2021) IgA Glycosylation and Immune Complex Formation in IgAN. Seminars in Immunopathology, 43, 669-678. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Coppo, R. (2023) A Disease-Modifying Approach to the Treatment of IgA Nephropathy Targeting Mucosal IgA Synthesis and Beyond. Kidney International, 103, 258-261. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Lafayette, R., Kristensen, J., Stone, A., Floege, J., Tesar, V., Trimarchi, H., Zhang, H., Eren, N., Paliege, A., Reich, H.N., Rovin, B.H. and Barratt, J. (2023) Efficacy and Safety of a Targeted-Release Formulation of Budesonide in Patients with Primary IgA Nephropathy (NefIgArd): 2-Year Results from a Randomised Phase 3 Trial. The Lancet, 402, 859-870. [Google Scholar] [CrossRef]
|
|
[14]
|
Medjeral-Thomas, N.R., Cook, H.T. and Pickering, M.C. (2021) Complement Activation in IgA Nephropathy. Seminars in Immunopathology, 43, 679-690. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Faria, B., Henriques, C., Matos, A.C., Daha, M.R., Pestana, M. and Seelen, M. (2015) Combined C4d and CD3 Immunostaining Predicts Immunoglobulin (Ig)A Nephropathy Progression. Clinical and Experimental Immunology, 179, 354-361. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Roos, A., Rastaldi, M.P., Calvaresi, N., Oortwijn, B.D., Schlagwein, N., van Gijlswijk-Janssen, D.J., Stahl, G.L., Matsushita, M., Fujita, T., van Kooten, C. and Daha, M.R. (2006) Glomerular Activation of the Lectin Pathway of Complement in IgA Nephropathy Is Associated with More Severe Renal Disease. Journal of the American Society of Nephrology, 17, 1724-1734. [Google Scholar] [CrossRef]
|
|
[17]
|
Zhang, Y., Yan, X., Zhao, T., Xu, Q., Peng, Q., Hu, R., Quan, S., Zhou, Y. and Xing, G. (2017) Targeting C3a/C5a Receptors Inhibits Human Mesangial Cell Proliferation and Alleviates Immunoglobulin A Nephropathy in Mice. Clinical and Experimental Immunology, 189, 60-70. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Hastings, M.C., Moldoveanu, Z., Suzuki, H., Berthoux, F., Julian, B.A., Sanders, J.T., Renfrow, M.B., Novak, J. and Wyatt, R.J. (2013) Biomarkers in IgA Nephropathy: Relationship to Pathogenetic Hits. Expert Opinion on Medical Diagnostics, 7, 615-627. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Bagchi, S., Lingaiah, R., Mani, K., Barwad, A., Singh, G., Balooni, V., Bhowmik, D. and Agarwal, S.K. (2019) Significance of Serum Galactose Deficient IgA1 as a Potential Biomarker for IgA Nephropathy: A Case Control Study. PLOS ONE, 14, e0214256. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Fukao, Y., Suzuki, H., Kim, J.S., Jeong, K.H., Makita, Y., Kano, T., Nihei, Y., Nakayama, M., Lee, M., Kato, R., Chang, J.M., Lee, S.H. and Suzuki, Y. (2022) Galactose-Deficient IgA1 as a Candidate Urinary Marker of IgA Nephropathy. Journal of Clinical Medicine, 11, Article 3173. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Temurhan, S., Akgul, S.U., Caliskan, Y., Artan, A.S., Kekik, C., Yazici, H., Demir, E., Caliskan, B., Turkmen, A., Oguz, F.S. and Sever, M.S. (2017) A Novel Biomarker for Post-Transplant Recurrent IgA Nephropathy. Transplantation Proceedings, 541-545. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Chen, H.-F., Kao, C.-C., Ka, S.-M., Wang, S.-Y., Chen, M.X., Chen, G.-Y., Weng, T.-I., Lai, R.-Y., Yeh, S.-C., Lin, Y.-C., Chen, H.-H., Chang, W.-C., Wu, M.-S. and Tsai, I.-L. (2022) Development of an Enrichment-Free One-Pot Sample Preparation and Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry Method to Identify Immunoglobulin A1 Hinge Region O-Glycoforms for Immunoglobulin A Nephropathy. Journal of Chromatography A, 1685, Article 463589. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Suzuki, H., Fan, R., Zhang, Z., Brown, R., Hall, S., Julian, B.A., Chatham, W.W., Suzuki, Y., Wyatt, R.J., Moldoveanu, Z., Lee, J.Y., Robinson, J., Tomana, M., Tomino, Y., Mestecky, J. and Novak. J. (2009) Aberrantly Glycosylated IgA1 in IgA Nephropathy Patients Is Recognized by IgG Antibodies with Restricted Heterogeneity. The Journal of Clinical Investigation, 119, 1668-1677. [Google Scholar] [CrossRef]
|
|
[24]
|
Duan, Z.-Y., Bu, R., Liang, S., Chen, X.-Z., Zhang, C., Zhang, Q.-Y., Li, J.-J., Chen, X.-M. and Cai, G.-Y. (2024) Urinary miR-185-5p Is a Biomarker of Renal Tubulointerstitial Fibrosis in IgA Nephropathy. Frontiers in Immunology, 15, Article 1326026. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Szeto, C.-C. and Li, P.K.-T. (2014) MicroRNAs in IgA Nephropathy. Nature Reviews Nephrology, 10, 249-256. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Zhang, Q., Zhao, Y., Luo, Y., Guo, S., Hou, H., Han, X. and Zhou, Y. (2024) Urinary Exosomal miRNA-451a Can Be Used as a Potential Noninvasive Biomarker for Diagnosis, Reflecting Tubulointerstitial Damage and Therapeutic Response in IgA Nephropathy. Renal Failure, 46, Article 2319326. [Google Scholar] [CrossRef]
|
|
[27]
|
Serino, G., Pesce, F., Sallustio, F., De Palma, G., Cox, S.N., Curci, C., Zaza, G., Lai, K.N., Leung, J.C., Tang, S.C., Papagianni, A., Stangou, M., Goumenos, D., Gerolymos, M., Takahashi, K., Yuzawa, Y., Maruyama, S., Imai, E. and Schena, F.P. (2016) In a Retrospective International Study, Circulating miR-148b and Let-7b Were Found to Be Serum Markers for Detecting Primary IgA Nephropathy. Kidney International, 89, 683-692. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Wang, G., Kwan, B.C.-H., Lai, F.M.-M., Chow, K.-M., Li, P.K.-T. and Szeto, C.-C. (2011) Elevated Levels of miR-146a and miR-155 in Kidney Biopsy and Urine from Patients with IgA Nephropathy. Disease Markers, 30, 171-179. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Szeto, C.-C., Ng, J.K.-C., Fung, W.W.-S., Chan, G.C.-K., Luk, C.C.-W., Lai, K.-B., Wang, G., Chow, K.-M. and Lai, F.M.-M. (2022) Urinary mi-106a for the Diagnosis of IgA Nephropathy: Liquid Biopsy for Kidney Disease. Clinica Chimica Acta, 530, 81-86. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Gong, W.-Y., Liu, M., Luo, D., Liu, F.-N., Yin, L.-H., Li, Y.-Q., Zhang, J. and Peng, H. (2019) High Serum IgA/C3 Ratio Better Predicts a Diagnosis of IgA Nephropathy among Primary Glomerular Nephropathy Patients with Proteinuria≤1 g/d: An Observational Cross-Sectional Study. BMC Nephrology, 20, Article No. 150. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Sirali, S.K. and Buberci, R. (2022) Correlation between IgAC3 Ratio and Oxford Score in IgA Nephropathy. Clinical and Experimental Nephrology, 26, 982-987. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Eleftheriadis, T. and Lawson, B.R. (2009) Toll-Like Receptors and Kidney Diseases. Inflammation & Allergy-Drug Targets, 8, 191-201. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Kaur, A., Baldwin, J., Brar, D., Salunke, D.B. and Petrovsky, N. (2022) Toll-Like Receptor (TLR) Agonists as a Driving Force Behind Next-Generation Vaccine Adjuvants and Cancer Therapeutics. Current Opinion in Chemical Biology, 70, Article 102172. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Wang, Y.-N., Gan, T., Qu, S., Xu, L.-L., Hu, Y., Liu, L.-J., Shi, S.-F., Lv, J.-C., Tsoi, L.C., Patrick, M.T., He, K., Berthier, C.C., Xu, H.-J., Zhou, X.-J. and Zhang, H. (2023) MTMR3 Risk Alleles Enhance Toll Like Receptor 9-Induced IgA Immunity in IgA Nephropathy. Kidney International, 104, 562-576. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Makita, Y., Suzuki, H., Kano, T., Takahata, A., Julian, B.A., Novak, J. and Suzuki, Y. (2020) TLR9 Activation Induces Aberrant IgA Glycosylation via APRIL-and IL-6-Mediated Pathways in IgA Nephropathy. Kidney International, 97, 340-349. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Suzuki, H., Suzuki, Y., Narita, I., Aizawa, M., Kihara, M., Yamanaka, T., Kanou, T., Tsukaguchi, H., Novak, J., Horikoshi, S. and Tomino, Y. (2008) Toll-Like Receptor 9 Affects Severity of IgA Nephropathy. Journal of the American Society of Nephrology, 19, 2384-2395. [Google Scholar] [CrossRef]
|
|
[37]
|
Zheng, N., Xie, K., Ye, H., Dong, Y., Wang, B., Luo, N., Fan, J., Tan, J., Chen, W. and Yu, X. (2020) TLR7 in B Cells Promotes Renal Inflammation and Gd-IgA1 Synthesis in IgA Nephropathy. JCI Insight, 5, e136965.
|
|
[38]
|
Liu, C., Ye, M.-Y., Yan, W.-Z., Peng, X.-F., He, L.-Y. and Peng, Y.-M. (2020) MicroRNA-630 Regulates Underglycosylated IgA1 Production in the Tonsils by Targeting TLR4 in IgA Nephropathy. Frontiers in Immunology, 11, Article 563699. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Wu, J., Hu, Z., Wang, Y., Hu, D., Yang, Q., Li, Y., Dai, W., Zhu, F., Yang, J., Wang, M., Zhu, H., Liu, L., He, X., Han, M., Yao, Y., Pei, G., Zeng, R. and Xu, G. (2021) Severe Glomerular C3 Deposition Indicates Severe Renal Lesions and a Poor Prognosis in Patients with Immunoglobulin A Nephropathy. Histopathology, 78, 882-895. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Yang, Y., Tang, X., Yang, Y., Li, X., Li, L., Huang, K., Li, Y., Li, J. and Fu, P. (2020) Glomerular C4 Deposition and Glomerulosclerosis Predict Worse Renal Outcomes in Chinese Patients with IgA Nephropathy. Renal Failure, 42, 629-637. [Google Scholar] [CrossRef]
|
|
[41]
|
Pan, M., Zhou, Q., Zheng, S., You, X., Li, D., Zhang, J., Chen, C., Xu, F., Li, Z., Zhou, Z. and Zhang, J. (2018) Serum C3/C4 Ratio Is a Novel Predictor of Renal Prognosis in Patients with IgA Nephropathy: A Retrospective Study. Immunologic Research, 66, 381-391. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Zhu, L., Guo, W.-Y., Shi, S.-F., Liu, L.-J., Lv, J.-C., Medjeral-Thomas, N.R., Lomax-Browne, H.J., Pickering, M.C. and Zhang, H. (2018) Circulating Complement Factor H-Related Protein 5 Levels Contribute to Development and Progression of IgA Nephropathy. Kidney International, 94, 150-158. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Tortajada, A., Gutierrez, E., Goicoechea de Jorge, E., Anter, J., Segarra, A., Espinosa, M., Blasco, M., Roman, E., Marco, H., Quintana, L.F., Gutierrez, J., Pinto, S., Lopez-Trascasa, M., Praga, M. and Rodriguez de Cordoba, S. (2017) Elevated Factor H-Related Protein 1 and Factor H Pathogenic Variants Decrease Complement Regulation in IgA Nephropathy. Kidney International, 92, 953-963. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Liu, L.-L., Liu, N., Chen, Y., Wang, L.-N., Jiang, Y., Wang, J., Li, X.-L., Yao, L. and Fan, Q.-L. (2013) Glomerular Mannose-Binding Lectin Deposition Is a Useful Prognostic Predictor in Immunoglobulin A Nephropathy. Clinical and Experimental Immunology, 174, 152-160. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Guo, W.-Y., Zhu, L., Meng, S.-J., Shi, S.-F., Liu, L.-J., Lv, J.-C. and Zhang, H. (2017) Mannose-Binding Lectin Levels Could Predict Prognosis in IgA Nephropathy. Journal of the American Society of Nephrology, 28, 3175-3181. [Google Scholar] [CrossRef]
|
|
[46]
|
Moresco, R.N., Bochi, G.V., Stein, C.S., De Carvalho, J.A.M., Cembranel, B.M. and Bollick, Y.S. (2018) Urinary Kidney Injury Molecule-1 in Renal Disease. Clinica Chimica Acta, 487, 15-21. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Bolignano, D., Lacquaniti, A., Coppolino, G., Donato, V., Campo, S., Fazio, M.R., Nicocia, G. and Buemi, M. (2009) Neutrophil Gelatinase-Associated Lipocalin (NGAL) and Progression of Chronic Kidney Disease. Clinical Journal of the American Society of Nephrology, 4, 337-344. [Google Scholar] [CrossRef]
|
|
[48]
|
Groza, Y., Jemelkova, J., Kafkova, L.R., Maly, P. and Raska, M. (2022) IL-6 and Its Role in IgA Nephropathy Development. Cytokine & Growth Factor Reviews, 66, 1-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Harada, K., Akai, Y., Kurumatani, N., Iwano, M. and Saito, Y. (2002) Prognostic Value of Urinary Interleukin 6 in Patients with IgA Nephropathy: An 8-Year Follow-Up Study. Nephron, 92, 824-826. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Zhao, W., Feng, S., Wang, Y., Wang, C., Ren, P., Zhang, J., Yu, L., Zhang, C., Bai, L., Chen, Y., Zhou, Q., Qu, L., Chen, J. and Jiang, H. (2023) Elevated Urinary IL-6 Predicts the Progression of IgA Nephropathy. Kidney International Reports, 8, 519-530. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Deng, Y.-J., Lin, X.-P., Li, X.-Q., Lu, P.-F., Cai, Y., Liu, L.-L., Pei, G.-C. and Han, M. (2021) Interleukin-7 Is Associated with Clinical and Pathological Activities in Immunoglobulin A Nephropathy and Protects the Renal Proximal Tubule Epithelium from Cellular Fibrosis. Current Medical Science, 41, 880-887. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Ju, W., Nair, V., Smith, S., Zhu, L., Shedden, K., Song, P.X.K., Mariani, L.H., Eichinger, F.H., Berthier, C.C., Randolph, A., Lai, J.Y., Zhou, Y., Hawkins, J.J., Bitzer, M., Sampson, M.G., Thier, M., Solier, C., Duran-Pacheco, G.C., Duchateau-Nguyen, G., Essioux, L., Schott, B., Formentini, I., Magnone, M.C., Bobadilla, M., Cohen, C.D., Bagnasco, S.M., Barisoni, L., Lv, J., Zhang, H., Wang, H.Y., Brosius, F.C., Gadegbeku, C.A. and Kretzler, M. (2015) Tissue Transcriptome-Driven Identification of Epidermal Growth Factor as a Chronic Kidney Disease Biomarker. Science Translational Medicine, 316, 316ra193. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Torres, D.D., Rossini, M., Manno, C., Mattace-Raso, F., D’Altri, C., Ranieri, E., Pontrelli, P., Grandaliano, G., Gesualdo, L. and Schena, F.P. (2008) The Ratio of Epidermal Growth Factor to Monocyte Chemotactic Peptide-1 in the Urine Predicts Renal Prognosis in IgA Nephropathy. Kidney International, 73, 327-333. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Han, S.Y., Jeong, K.H., Ihm, C.-G., Kang, Y.S. and Cha, D.R. (2021) Serum Interferon-Gamma and Urinary Monocyte Chemoattractant Peptide-1 Are Important Factors in the Pathogenesis of Immunoglobulin A Nephropathy. Kidney Research and Clinical Practice, 40, 69-76. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Stangou, M., Alexopoulos, E., Papagianni, A., Pantzaki, A., Bantis, C., Dovas, S., Economidou, D., Leontsini, M. and Memmos, D. (2009) Urinary Levels of Epidermal Growth Factor, Interleukin-6 and Monocyte Chemoattractant Protein-1 May Act as Predictor Markers of Renal Function Outcome in Immunoglobulin A Nephropathy. Nephrology, 14, 613-620. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Fang, Y., Yu, X., Liu, Y., Kriegel, A.J., Heng, Y., Xu, X., Liang, M. and Ding, X. (2013) miR-29c Is Downregulated in Renal Interstitial Fibrosis in Humans and Rats and Restored by HIF-Alpha Activation. American Journal of Physiology-Renal Physiology, 304, F1274-F1282. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Pawluczyk, I.Z.A., Didangelos, A., Barbour, S.J., Er, L., Becker, J.U., Martin, R., Taylor, S., Bhachu, J.S., Lyons, E.G., Jenkins, R.H., Fraser, D., Molyneux, K., Perales-Paton, J., Saez-Rodriguez, J. and Barratt, J. (2021) Differential Expression of MicroRNA miR-150-5p in IgA Nephropathy as a Potential Mediator and Marker of Disease Progression. Kidney International, 99, 1127-1139. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Liang, S., Cai, G.-Y., Duan, Z.-Y., Liu, S.-W., Wu, J., Lv, Y., Hou, K., Li, Z.-X., Zhang, X.-G. and Chen, X.-M. (2017) Urinary Sediment miRNAs Reflect Tubulointerstitial Damage and Therapeutic Response in IgA Nephropathy. BMC Nephrology, 18, Article No. 63. [Google Scholar] [CrossRef] [PubMed]
|