|
[1]
|
Tatekawa, H., Shimono, T., Ohsawa, M., et al. (2018) Imaging Features of Benign Mass Lesions in the Nasal Cavity and Paranasal Sinuses According to the 2017 WHO Classification. Japanese Journal of Radiology, 36, 361-381. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
罗万洁, 张天虹. 骨吸收机制在中耳胆脂瘤中的研究进展[J]. 中华耳科学杂志, 2023, 21(5): 711-715.
|
|
[3]
|
Luong, T.T. and Yan, C.H. (2023) Benign Paranasal Sinus Tumors. Current Otorhinolaryngology Reports, 11, 332-343. [Google Scholar] [CrossRef]
|
|
[4]
|
Gibson, T.N., McNaughton, D.P. and Hanchard, B. (2017) Sinonasal Malignancies: Incidence and Histological Distribution in Jamaica, 1973-2007. Cancer Causes & Control, 28, 1219-1225. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Barnes, L. (2019) Diseases of the Nasal Cavity, Paranasal Sinuses, and Nasopharynx. In: Surgical Pathology of the Head and Neck, CRC Press, Boca Raton, 353-432.
|
|
[6]
|
Wang, Z., Chen, S., Zhu, Q., et al. (2021) Using a Two-Sample Mendelian Randomization Method in Assessing the Causal Relationships between Human Blood Metabolites and Heart Failure. Frontiers in Cardiovascular Medicine, 8, Article ID: 695480. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Johnson, C.H., Ivanisevic, J. and Siuzdak, G. (2016) Metabolomics: Beyond Biomarkers and Towards Mechanisms. Nature Reviews Molecular Cell Biology, 17, 451-459. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Wang, Z. and Yang, Q. (2024) The Causal Relationship between Human Blood Metabolites and the Risk of Visceral Obesity: A Mendelian Randomization Analysis. Lipids in Health and Disease, 23, Article No. 39. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Yang, J., Yan, B., Zhao, B., et al. (2020) Assessing the Causal Effects of Human Serum Metabolites on 5 Major Psychiatric Disorders. Schizophrenia Bulletin, 46, 804-813. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Shin, S.Y., Fauman, E.B., Petersen, A.K., et al. (2014) An Atlas of Genetic Influences on Human Blood Metabolites. Nature Genetics, 46, 543-550. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Chen, Y., Lu, T., Pettersson-Kymmer, U., et al. (2023) Genomic Atlas of the Plasma Metabolome Prioritizes Metabolites Implicated in Human Diseases. Nature Genetics, 55, 44-53. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Fu, R. and Kim, S.J. (2021) Inferring Causality from Observational Studies: The Role of Instrumental Variable Analysis. Kidney International, 99, 1303-1308. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Sanderson, E., Glymour, M.M., Holmes, M.V., et al. (2022) Mendelian Randomization. Nature Reviews Methods Primers, 2, Article No. 6. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Burgess, S., Butterworth, A. and Thompson, S.G. (2013) Mendelian Randomization Analysis with Multiple Genetic Variants Using Summarized Data. Genetic Epidemiology, 37, 658-665. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Bowden, J., Davey Smith, G. and Burgess, S. (2015) Mendelian Randomization with Invalid Instruments: Effect Estimation and Bias Detection through Egger Regression. International Journal of Epidemiology, 44, 512-525. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Bowden, J., Davey Smith, G., Haycock, P.C., et al. (2016) Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genetic Epidemiology, 40, 304-314. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Hartwig, F.P., Davey Smith, G. and Bowden, J. (2017) Robust Inference in Summary Data Mendelian Randomization via the Zero Modal Pleiotropy Assumption. International Journal of Epidemiology, 46, 1985-1998. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Yin, Y., Shan, C., Han, Q., et al. (2023) Causal Effects of Human Serum Metabolites on Occurrence and Progress Indicators of Chronic Kidney Disease: A Two-Sample Mendelian Randomization Study. Frontiers in Nutrition, 10, Article ID: 1274078. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
王子贤, 赖伟华, 钟诗龙. 两样本孟德尔随机化方法分析血液代谢物与冠心病的因果关系[J]. 南方医科大学学报, 2021, 41(2): 272-278.
|
|
[20]
|
Luo, P., Yuan, Q., Wan, X., et al. (2023) A Two-Sample Mendelian Randomization Study of Circulating Lipids and Deep Venous Thrombosis. Scientific Reports, 13, Article No. 7432. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
魏熙翔, 杨晖, 尹雪, 等. 基于双样本孟德尔随机化的特应性皮炎与圆锥角膜因果关系研究[J]. 中华眼视光学与视觉科学杂志, 2023, 25(11): 860-865. [Google Scholar] [CrossRef]
|
|
[22]
|
Xu, W., Zhang, F., Shi, Y., et al. (2022) Causal Association of Epigenetic Aging and COVID-19 Severity and Susceptibility: A Bidirectional Mendelian Randomization Study. Frontiers in Medicine, 9, Article ID: 989950. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Cyriac, R. and Lee, K. (2024) Glutaminase Inhibition as Potential Cancer Therapeutics: Current Status and Future Applications. Journal of Enzyme Inhibition and Medicinal Chemistry, 39, Article ID: 2290911. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Bachert, C., Hörmann, K., Mösges, R., et al. (2003) An Update on the Diagnosis and Treatment of Sinusitis and Nasal Polyposis. Allergy, 58, 176-191. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Bermúdez, M.A., Pereira, L., Fraile, C., et al. (2022) Roles of Palmitoleic Acid and Its Positional Isomers, Hypogeic and Sapienic Acids, in Inflammation, Metabolic Diseases and Cancer. Cells, 11, Article No. 2146. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Szustak, M., Korkus, E., Madaj, R., et al. (2024) Lysophosphatidylcholines Enriched with Cis and Trans Palmitoleic Acid Regulate Insulin Secretion via GPR119 Receptor. ACS Medicinal Chemistry Letters, 15, 197-204. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Cavallero, S., Roustaei, M., Satta, S., et al. (2024) Exercise Mitigates Flow Recirculation and Activates Metabolic Transducer SCD1 to Catalyze Vascular Protective Metabolites. Science Advances, 10, Eadj7481. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Cetin, E., Porter, L.M. and Burak, M.F. (2024) Protocol for a Randomized Placebo-Controlled Clinical Trial Using Pure Palmitoleic Acid to Ameliorate Insulin Resistance and Lipogenesis in Overweight and Obese Subjects with Prediabetes. Frontiers in Endocrinology, 14, Article ID: 1306528. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Yang, Z.H., Takeo, J. and Katayama, M. (2013) Oral Administration of Omega-7 Palmitoleic Acid Induces Satiety and the Release of Appetite-Related Hormones in Male Rats. Appetite, 65, 1-7. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Matthan, N.R., Dillard, A., Lecker, J.L., et al. (2009) Effects of Dietary Palmitoleic Acid on Plasma Lipoprotein Profile and Aortic Cholesterol Accumulation Are Similar to Those of Other Unsaturated Fatty Acids in the F1B Golden Syrian Hamster. The Journal of Nutrition, 139, 215-221. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Papsdorf, K., Miklas, J.W., Hosseini, A., et al. (2023) Lipid Droplets and Peroxisomes Are Co-Regulated to Drive Lifespan Extension in Response to Mono-Unsaturated Fatty Acids. Nature Cell Biology, 25, 672-684. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
李杰萍, 邹建平, 江絮萍, 等. 子宫内膜癌患者外周血红细胞膜脂肪酸组分变化及其与发病风险的关系[J]. 山东医药, 2023, 63(35): 5-9.
|
|
[33]
|
颜清, 杨紫伟, 戴锦娜. 游离单不饱和脂肪酸对胸腔积液良恶性的鉴别诊断[J]. 中华实用诊断与治疗杂志, 2018, 32(8): 751-754. [Google Scholar] [CrossRef]
|
|
[34]
|
Snaebjornsson, M.T., Janaki-Raman, S. and Schulze, A. (2020) Greasing the Wheels of the Cancer Machine: The Role of Lipid Metabolism in Cancer. Cell Metabolism, 31, 62-76. [Google Scholar] [CrossRef] [PubMed]
|