|
[1]
|
李龙, 徐洪波, 任飞飞, 等. 光子晶体光热调控研究[J]. 中国材料进展, 2019, 38(4): 352-358 341.
|
|
[2]
|
Dou, S., Xu, H., Zhao, J., et al. (2021) Bioinspired Microstructured Materials for Optical and Thermal Regulation. Advanced Materials, 33, Article ID: 2000697. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Lin, C., Hur, J., Chao, C.Y.H., et al. (2022) All-Weather Thermochromic Windows for Synchronous Solar and Thermal Radiation Regulation. Science Advances, 8, Eabn7359. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Zhu, L., Tian, L., Jiang, S., et al. (2023) Advances in Photothermal Regulation Strategies: From Efficient Solar Heating to Daytime Passive Cooling. Chemical Society Reviews, 52, 7389-7460. [Google Scholar] [CrossRef]
|
|
[5]
|
Prosuntsov, P. and Praheeva, A. (2021) Design of Thermal Insulation Based on Open-Cell Carbon Materials for Spacecraft. Materials Today: Proceedings, 38, 2019-2024. [Google Scholar] [CrossRef]
|
|
[6]
|
Doherty, K.A.J., Dunne, C.F., Norman, A., et al. (2016) Flat Absorber Coating for Spacecraft Thermal Control Applications. Journal of Spacecraft and Rockets, 53, 1035-1042. [Google Scholar] [CrossRef]
|
|
[7]
|
Shirshneva-Vaschenko, E.V., Shirshnev, P.S., Snezhnaia, Z.G., et al. (2019) Zinc Oxide Aluminum Doped Slabs for Heat-Eliminating Coatings of Spacecrafts. Acta Astronautica, 163, 107-111. [Google Scholar] [CrossRef]
|
|
[8]
|
Grob, L.M. and Swanson, T.D. (2000) Parametric Study of Variable Emissivity Radiator Surfaces. AIP Conference Proceedings, 504, 809-814. [Google Scholar] [CrossRef]
|
|
[9]
|
Xiao, L., Ma, H., Liu, J., et al. (2015) Fast Adaptive Thermal Camouflage Based on Flexible VO2/Graphene/CNT Thin Films. Nano Letters, 15, 8365-8370. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Du, K.-K., Li, Q., Lyu, Y.-B., et al. (2017) Control over Emissivity of Zero-Static-Power Thermal Emitters Based on Phase-Changing Material GST. Light: Science & Applications, 6, E16194. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Xu, G., Zhang, L., Wang, B., et al. (2020) A Visible-to-Infrared Broadband Flexible Electrochromic Device Based Polyaniline for Simulta-Neously Variable Optical and Thermal Management. Solar Energy Materials and Solar Cells, 208, Article ID: 110356. [Google Scholar] [CrossRef]
|
|
[12]
|
Sun, Y., Chang, H., Hu, J., et al. (2021) Large-Scale Multifunctional Carbon Nanotube Thin Film as Effective Mid-Infrared Radiation Modulator with Long-Term Stability. Advanced Optical Materials, 9, Article ID: 2001216. [Google Scholar] [CrossRef]
|
|
[13]
|
Inoue, T., Zoysa, M.D., Asano, T., et al. (2014) Realization of Dynamic Thermal Emission Control. Nature Materials, 13, 928-931. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Ming, Y., Sun, Y., Liu, X., et al. (2022) Optical Evaluation of a Smart Transparent Insulation Material for Window Application. Energy Conversion and Management: X, 16, Article ID: 100315. [Google Scholar] [CrossRef]
|
|
[15]
|
Huang, Z., Chen, S., Lv, C., et al. (2012) Infrared Characteristics of VO2 Thin Films for Smart Window and Laser Protection Applications. Applied Physics Letters, 101, Article ID: 191905. [Google Scholar] [CrossRef]
|
|
[16]
|
Zeng, J., Wang, Y., Rajan, K., et al. (2021) Transparent-to-Black Electrochromic Smart Windows Based on N,N,N’,N’-Tetraphenylbenzidine Derivatives and Tungsten Trioxide with High Adjustment Ability for Visible and Near-Infrared Light. Solar Energy Materials and Solar Cells, 226, Article ID: 111070. [Google Scholar] [CrossRef]
|
|
[17]
|
Yang, P., Sun, P. and Mai, W. (2016) Electrochromic Energy Storage Devices. Materials Today, 19, 394-402. [Google Scholar] [CrossRef]
|
|
[18]
|
Wang, J.-L., Sheng, S.-Z., He, Z., et al. (2021) Self-Powered Flexible Electrochromic Smart Window. Nano Letters, 21, 9976-9982. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Junsukhon, A. and Ngaotrakanwiwat, P. (2019) Effect of CuS:WO3 Ratio on the Photochromic Properties of CuS-WO3 Film. Materials Today: Proceedings, 17, 1780-1786. [Google Scholar] [CrossRef]
|
|
[20]
|
Wang, L., Liu, Y., Zhan, X., et al. (2019) Photochromic Transparent Wood for Photo-Switchable Smart Window Applications. Journal of Materials Chemistry C, 7, 8649-8654. [Google Scholar] [CrossRef]
|
|
[21]
|
Kim, C.W., Santoro, E.G., Pawar, A.U., et al. (2023) Swift Photochromic Smart Window Based on Plasmonic Yolk-Shell Nanophosphors. Advanced Optical Materials, 11, Article ID: 2202171. [Google Scholar] [CrossRef]
|
|
[22]
|
Tian, J., Peng, H., Du, X., et al. (2021) Hybrid Thermochromic Microgels Based on UCNPs/PNIPAm Hydrogel for Smart Window with En-Hanced Solar Modulation. Journal of Alloys and Compounds, 858, Article ID: 157725. [Google Scholar] [CrossRef]
|
|
[23]
|
Ji, H., Liu, D., Cheng, H., et al. (2018) Vanadium Dioxide Nanopowders with Tunable Emissivity for Adaptive Infrared Camouflage in both Thermal Atmospheric Windows. Solar Energy Materials and Solar Cells, 175, 96-101. [Google Scholar] [CrossRef]
|
|
[24]
|
Xu, F., Cao, X., Luo, H., et al. (2018) Recent Advances in VO2-Based Thermochromic Composites for Smart Windows. Journal of Materials Chemistry C, 6, 1903-1919. [Google Scholar] [CrossRef]
|
|
[25]
|
Zhang, Z., Zhang, L., Zhou, Y., et al. (2023) Thermochromic Energy Efficient Windows: Fundamentals, Recent Advances, and Perspectives. Chemical Reviews, 123, 7025-7080. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Ji, C., Wu, Z., Lu, L., et al. (2018) High Thermochromic Performance of Fe/Mg Co-Doped VO2 Thin Films for Smart Window Applications. Journal of Materials Chemistry C, 6, 6502-6509. [Google Scholar] [CrossRef]
|
|
[27]
|
Hao, Q., Li, W., Xu, H., et al. (2018) VO2/TiN Plasmonic Thermochromic Smart Coatings for Room-Temperature Applications. Advanced Materials, 30, Article ID: 1705421. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Cao, X., Chang, T., Shao, Z., et al. (2020) Challenges and Opportunities toward Real Application of VO2-Based Smart Glazing. Matter, 2, 862-881. [Google Scholar] [CrossRef]
|
|
[29]
|
Chang, T., Zhu, Y., Cao, C., et al. (2021) Multifunctional Flexible Vanadium Dioxide Films. Accounts of Materials Research, 2, 714-725. [Google Scholar] [CrossRef]
|
|
[30]
|
Wang, S., Zhou, Y., Jiang, T., et al. (2021) Thermochromic Smart Windows with Highly Regulated Radiative Cooling and Solar Transmission. Nano Energy, 89, Article ID: 106440. [Google Scholar] [CrossRef]
|
|
[31]
|
Demiryont, H. and Moorehead, D. (2009) Electrochromic Emissivity Modulator for Spacecraft Thermal Management. Solar Energy Materials and Solar Cells, 93, 2075-2078. [Google Scholar] [CrossRef]
|
|
[32]
|
Tian, Y., Zhang, X., Dou, S., et al. (2017) A Comprehensive Study of Electrochromic Device with Variable Infrared Emissivity Based on Polyaniline Conducting Polymer. Solar Energy Materials and Solar Cells, 170, 120-126. [Google Scholar] [CrossRef]
|
|
[33]
|
Chandrasekhar, P., Zay, B.J., Lawrence, D., et al. (2014) Variable-Emittance Infrared Electrochromic Skins Combining Unique Conducting Polymers, Ionic Liquid Electrolytes, Microporous Polymer Membranes, and Semiconductor/Polymer Coatings, for Spacecraft Thermal Control. Journal of Applied Polymer Science, 131, Article No. 40850. [Google Scholar] [CrossRef]
|
|
[34]
|
Jia, Y., Liu, D., Chen, D., et al. (2023) Transparent Dynamic Infrared Emissivity Regulators. Nature Communications, 14, Article No. 5087. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Zeng, S., Shen, K., Liu, Y., et al. (2021) Dynamic Thermal Radiation Modulators via Mechanically Tunable Surface Emissivity. Materials Today, 45, 44-53. [Google Scholar] [CrossRef]
|
|
[36]
|
Wang, Y., Ji, H., Chen, Y., et al. (2023) Artificially Adjustable Radiative Cooling Device with Environmental Adaptability. Ceramics International, 49, 40297-40304. [Google Scholar] [CrossRef]
|
|
[37]
|
Guo, R.H., et al. (2022) Phase-Change Materials for Intelligent Temperature Regulation. Materials Today Energy, 23, Article ID: 100888. [Google Scholar] [CrossRef]
|
|
[38]
|
Cui, Y., Ke, Y., Liu, C., et al. (2018) Thermochromic VO2 for Energy-Efficient Smart Windows. Joule, 2, 1707-1746. [Google Scholar] [CrossRef]
|
|
[39]
|
Shi, R., Chen, Y., Cai, X., et al. (2021) Phase Management in Single-Crystalline Vanadium Dioxide Beams. Nature Communications, 12, Article No. 4214. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Liu, D., Ji, H., Peng, R., et al. (2018) Infrared Chameleon-Like Behavior from VO2(M) Thin Films Prepared by Transformation of Metastable VO2(B) for Adaptive Camouflage in both Thermal Atmospheric Windows. Solar Energy Materials and Solar Cells, 185, 210-217. [Google Scholar] [CrossRef]
|
|
[41]
|
Li, M., Magdassi, S., Gao, Y., et al. (2017) Hydrothermal Synthesis of VO2 Polymorphs: Advantages, Challenges and Prospects for the Application of Energy Efficient Smart Windows. Small, 13, Article ID: 1701147. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Chen, Y., Ji, H., Lu, M., et al. (2023) Machine Learning Guided Hydrothermal Synthesis of Thermochromic VO2 Nanoparticles. Ceramics International, 49, 30794-30800. [Google Scholar] [CrossRef]
|
|
[43]
|
Ji, H., Liu, D., Cheng, H., et al. (2019) Large Area Infrared Thermochromic VO2 Nanoparticle Films Prepared by Inkjet Printing Technology. Solar Energy Materials and Solar Cells, 194, 235-243. [Google Scholar] [CrossRef]
|
|
[44]
|
Taylor, S., Long, L., Mcburney, R., et al. (2020) Spectrally-Selective Vanadium Dioxide Based Tunable Metafilm Emitter for Dynamic Radiative Cooling. Solar Energy Materials and Solar Cells, 217, Article ID: 110739. [Google Scholar] [CrossRef]
|
|
[45]
|
Liang, S., Xu, F., Li, W., et al. (2023) Tunable Smart Mid Infrared Thermal Control Emitter Based on Phase Change Material VO2 Thin Film. Applied Thermal Engineering, 232, Article ID: 121074. [Google Scholar] [CrossRef]
|
|
[46]
|
Xie, B., Zhang, W., Zhao, J., et al. (2022) VO2-Based Superposed Fabry-Perot Multilayer Film with a Highly Enhanced Infrared Emittance and Emittance Tunability for Spacecraft Thermal Control. Optics Express, 30, 34314-34327. [Google Scholar] [CrossRef]
|
|
[47]
|
Wang, H., Yang, Y. and Wang, L. (2014) Wavelength-Tunable Infrared Metamaterial by Tailoring Magnetic Resonance Condition with VO2 Phase Transition. Journal of Applied Physics, 116, Article ID: 123503. [Google Scholar] [CrossRef]
|
|
[48]
|
Yan, C., Wang, Z., Qu, J., et al. (2023) Scalable and Dynamically Passive Thermal Regulation over Solar Wavelengths Enabled by Phase-Transition Metamaterials. Solar Energy, 257, 257-265. [Google Scholar] [CrossRef]
|
|
[49]
|
Wang, X., Chen, L., Lu, H., et al. (2021) Enhancing Visible-Light Transmittance While Reducing Phase Transition Temperature of VO2 by Hf-W Co-Doping. Applied Physics Letters, 118, Article ID: 192102. [Google Scholar] [CrossRef]
|
|
[50]
|
Zhao, Y., Ji, H., Ou, Y., et al. (2024) Novel Sunlight-Driven Cu7S4/VO2 Composite Films for Smart Windows. Journal of Materials Chemistry C, 12, 2534-2543. [Google Scholar] [CrossRef]
|
|
[51]
|
Zhu, J., Huang, A., Ma, H., et al. (2016) Composite Film of Vanadium Dioxide Nanoparticles and Ionic Liquid-Nickel-Chlorine Complexes with Excellent Visible Thermochromic Performance. ACS Applied Materials & Interfaces, 8, 29742-29748. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Ji, H., Zhao, Y., Lu, M., et al. (2023) Novel Warm/Cool-Tone Switchable VO2-Based Smart Window Composite Films with Excellent Optical Performance. Ceramics International, 49, 22630-22635. [Google Scholar] [CrossRef]
|
|
[53]
|
Xu, F., Cao, X., Shao, Z., et al. (2019) Highly Enhanced Thermochromic Performance of VO2 Film Using “Movable” Antireflective Coatings. ACS Applied Materials & Interfaces, 11, 4712-4718. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Pu, J., Shen, C., Lu, L., et al. (2024) Ammonia Powered Thermal-Responsive Smart Window with Spectral Regulation of Cu2 and Sodium Copper Chlorophyllin. Energy Conversion and Management, 299, Article ID: 117815. [Google Scholar] [CrossRef]
|
|
[55]
|
Wang, S., Jiang, T., Meng, Y., et al. (2021) Scalable Thermochromic Smart Windows with Passive Radiative Cooling Regulation. Science, 374, 1501-1504. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Ke, Y., Li, Y., Wu, L., et al. (2022) On-Demand Solar and Thermal Radiation Management Based on Switchable Interwoven Surfaces. ACS Energy Letters, 7, 1758-1763. [Google Scholar] [CrossRef]
|